Metamath Proof Explorer


Theorem hilmet

Description: The Hilbert space norm determines a metric space. (Contributed by NM, 17-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypothesis hilmet.1 𝐷 = ( norm ∘ − )
Assertion hilmet 𝐷 ∈ ( Met ‘ ℋ )

Proof

Step Hyp Ref Expression
1 hilmet.1 𝐷 = ( norm ∘ − )
2 eqid ⟨ ⟨ + , · ⟩ , norm ⟩ = ⟨ ⟨ + , · ⟩ , norm
3 2 1 hhims 𝐷 = ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
4 2 3 hhmet 𝐷 ∈ ( Met ‘ ℋ )