Description: The Hilbert space norm determines a metric space. (Contributed by NM, 17-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hilmet.1 | ⊢ 𝐷 = ( normℎ ∘ −ℎ ) | |
| Assertion | hilmet | ⊢ 𝐷 ∈ ( Met ‘ ℋ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hilmet.1 | ⊢ 𝐷 = ( normℎ ∘ −ℎ ) | |
| 2 | eqid | ⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 3 | 2 1 | hhims | ⊢ 𝐷 = ( IndMet ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) | 
| 4 | 2 3 | hhmet | ⊢ 𝐷 ∈ ( Met ‘ ℋ ) |