Metamath Proof Explorer


Theorem hilmetdval

Description: Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 17-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypothesis hilmet.1 𝐷 = ( norm ∘ − )
Assertion hilmetdval ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 𝐷 𝐵 ) = ( norm ‘ ( 𝐴 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 hilmet.1 𝐷 = ( norm ∘ − )
2 eqid ⟨ ⟨ + , · ⟩ , norm ⟩ = ⟨ ⟨ + , · ⟩ , norm
3 2 1 hhims 𝐷 = ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
4 2 3 hhmetdval ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 𝐷 𝐵 ) = ( norm ‘ ( 𝐴 𝐵 ) ) )