Step |
Hyp |
Ref |
Expression |
1 |
|
hilnorm.5 |
⊢ ℋ = ( BaseSet ‘ 𝑈 ) |
2 |
|
hilnorm.2 |
⊢ ·ih = ( ·𝑖OLD ‘ 𝑈 ) |
3 |
|
hilnorm.9 |
⊢ 𝑈 ∈ NrmCVec |
4 |
|
eqid |
⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) |
5 |
1 4 2
|
ipnm |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℋ ) → ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) = ( √ ‘ ( 𝑥 ·ih 𝑥 ) ) ) |
6 |
3 5
|
mpan |
⊢ ( 𝑥 ∈ ℋ → ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) = ( √ ‘ ( 𝑥 ·ih 𝑥 ) ) ) |
7 |
6
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℋ ↦ ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ℋ ↦ ( √ ‘ ( 𝑥 ·ih 𝑥 ) ) ) |
8 |
1 4
|
nvf |
⊢ ( 𝑈 ∈ NrmCVec → ( normCV ‘ 𝑈 ) : ℋ ⟶ ℝ ) |
9 |
8
|
feqmptd |
⊢ ( 𝑈 ∈ NrmCVec → ( normCV ‘ 𝑈 ) = ( 𝑥 ∈ ℋ ↦ ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) |
10 |
3 9
|
ax-mp |
⊢ ( normCV ‘ 𝑈 ) = ( 𝑥 ∈ ℋ ↦ ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) |
11 |
|
dfhnorm2 |
⊢ normℎ = ( 𝑥 ∈ ℋ ↦ ( √ ‘ ( 𝑥 ·ih 𝑥 ) ) ) |
12 |
7 10 11
|
3eqtr4ri |
⊢ normℎ = ( normCV ‘ 𝑈 ) |