| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hilablo |
⊢ +ℎ ∈ AbelOp |
| 2 |
|
ax-hfvadd |
⊢ +ℎ : ( ℋ × ℋ ) ⟶ ℋ |
| 3 |
2
|
fdmi |
⊢ dom +ℎ = ( ℋ × ℋ ) |
| 4 |
|
ax-hfvmul |
⊢ ·ℎ : ( ℂ × ℋ ) ⟶ ℋ |
| 5 |
|
ax-hvmulid |
⊢ ( 𝑥 ∈ ℋ → ( 1 ·ℎ 𝑥 ) = 𝑥 ) |
| 6 |
|
ax-hvdistr1 |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 ·ℎ ( 𝑥 +ℎ 𝑧 ) ) = ( ( 𝑦 ·ℎ 𝑥 ) +ℎ ( 𝑦 ·ℎ 𝑧 ) ) ) |
| 7 |
|
ax-hvdistr2 |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑦 + 𝑧 ) ·ℎ 𝑥 ) = ( ( 𝑦 ·ℎ 𝑥 ) +ℎ ( 𝑧 ·ℎ 𝑥 ) ) ) |
| 8 |
|
ax-hvmulass |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑦 · 𝑧 ) ·ℎ 𝑥 ) = ( 𝑦 ·ℎ ( 𝑧 ·ℎ 𝑥 ) ) ) |
| 9 |
|
eqid |
⊢ 〈 +ℎ , ·ℎ 〉 = 〈 +ℎ , ·ℎ 〉 |
| 10 |
1 3 4 5 6 7 8 9
|
isvciOLD |
⊢ 〈 +ℎ , ·ℎ 〉 ∈ CVecOLD |