Metamath Proof Explorer


Theorem hilvc

Description: Hilbert space is a complex vector space. Vector addition is +h , and scalar product is .h . (Contributed by NM, 15-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion hilvc ⟨ + , · ⟩ ∈ CVecOLD

Proof

Step Hyp Ref Expression
1 hilablo + ∈ AbelOp
2 ax-hfvadd + : ( ℋ × ℋ ) ⟶ ℋ
3 2 fdmi dom + = ( ℋ × ℋ )
4 ax-hfvmul · : ( ℂ × ℋ ) ⟶ ℋ
5 ax-hvmulid ( 𝑥 ∈ ℋ → ( 1 · 𝑥 ) = 𝑥 )
6 ax-hvdistr1 ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) )
7 ax-hvdistr2 ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑦 + 𝑧 ) · 𝑥 ) = ( ( 𝑦 · 𝑥 ) + ( 𝑧 · 𝑥 ) ) )
8 ax-hvmulass ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑦 · 𝑧 ) · 𝑥 ) = ( 𝑦 · ( 𝑧 · 𝑥 ) ) )
9 eqid ⟨ + , · ⟩ = ⟨ + , ·
10 1 3 4 5 6 7 8 9 isvciOLD ⟨ + , · ⟩ ∈ CVecOLD