Metamath Proof Explorer


Theorem hilxmet

Description: The Hilbert space norm determines a metric space. (Contributed by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)

Ref Expression
Hypothesis hilmet.1 𝐷 = ( norm ∘ − )
Assertion hilxmet 𝐷 ∈ ( ∞Met ‘ ℋ )

Proof

Step Hyp Ref Expression
1 hilmet.1 𝐷 = ( norm ∘ − )
2 1 hilmet 𝐷 ∈ ( Met ‘ ℋ )
3 metxmet ( 𝐷 ∈ ( Met ‘ ℋ ) → 𝐷 ∈ ( ∞Met ‘ ℋ ) )
4 2 3 ax-mp 𝐷 ∈ ( ∞Met ‘ ℋ )