Step |
Hyp |
Ref |
Expression |
1 |
|
hicl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih 𝐵 ) ∈ ℂ ) |
2 |
|
cjreb |
⊢ ( ( 𝐴 ·ih 𝐵 ) ∈ ℂ → ( ( 𝐴 ·ih 𝐵 ) ∈ ℝ ↔ ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) = ( 𝐴 ·ih 𝐵 ) ) ) |
3 |
1 2
|
syl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) ∈ ℝ ↔ ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) = ( 𝐴 ·ih 𝐵 ) ) ) |
4 |
|
eqcom |
⊢ ( ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) = ( 𝐴 ·ih 𝐵 ) ↔ ( 𝐴 ·ih 𝐵 ) = ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) |
5 |
3 4
|
bitrdi |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) ∈ ℝ ↔ ( 𝐴 ·ih 𝐵 ) = ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) |
6 |
|
ax-his1 |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐵 ·ih 𝐴 ) = ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) |
7 |
6
|
ancoms |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐵 ·ih 𝐴 ) = ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) |
8 |
7
|
eqeq2d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) = ( 𝐵 ·ih 𝐴 ) ↔ ( 𝐴 ·ih 𝐵 ) = ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) |
9 |
5 8
|
bitr4d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) ∈ ℝ ↔ ( 𝐴 ·ih 𝐵 ) = ( 𝐵 ·ih 𝐴 ) ) ) |