Metamath Proof Explorer
Description: Conjugate law for inner product. Postulate (S1) of Beran p. 95.
(Contributed by NM, 15-May-2005) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
his1.1 |
⊢ 𝐴 ∈ ℋ |
|
|
his1.2 |
⊢ 𝐵 ∈ ℋ |
|
Assertion |
his1i |
⊢ ( 𝐴 ·ih 𝐵 ) = ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
his1.1 |
⊢ 𝐴 ∈ ℋ |
2 |
|
his1.2 |
⊢ 𝐵 ∈ ℋ |
3 |
|
ax-his1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih 𝐵 ) = ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 ·ih 𝐵 ) = ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) |