| Step | Hyp | Ref | Expression | 
						
							| 1 |  | his5 | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ )  →  ( 𝐶  ·ih  ( 𝐵  ·ℎ  𝐷 ) )  =  ( ( ∗ ‘ 𝐵 )  ·  ( 𝐶  ·ih  𝐷 ) ) ) | 
						
							| 2 | 1 | 3expb | ⊢ ( ( 𝐵  ∈  ℂ  ∧  ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ ) )  →  ( 𝐶  ·ih  ( 𝐵  ·ℎ  𝐷 ) )  =  ( ( ∗ ‘ 𝐵 )  ·  ( 𝐶  ·ih  𝐷 ) ) ) | 
						
							| 3 | 2 | adantll | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ ) )  →  ( 𝐶  ·ih  ( 𝐵  ·ℎ  𝐷 ) )  =  ( ( ∗ ‘ 𝐵 )  ·  ( 𝐶  ·ih  𝐷 ) ) ) | 
						
							| 4 | 3 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ ) )  →  ( 𝐴  ·  ( 𝐶  ·ih  ( 𝐵  ·ℎ  𝐷 ) ) )  =  ( 𝐴  ·  ( ( ∗ ‘ 𝐵 )  ·  ( 𝐶  ·ih  𝐷 ) ) ) ) | 
						
							| 5 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ ) )  →  𝐴  ∈  ℂ ) | 
						
							| 6 |  | simprl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ ) )  →  𝐶  ∈   ℋ ) | 
						
							| 7 |  | hvmulcl | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐷  ∈   ℋ )  →  ( 𝐵  ·ℎ  𝐷 )  ∈   ℋ ) | 
						
							| 8 | 7 | ad2ant2l | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ ) )  →  ( 𝐵  ·ℎ  𝐷 )  ∈   ℋ ) | 
						
							| 9 |  | ax-his3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈   ℋ  ∧  ( 𝐵  ·ℎ  𝐷 )  ∈   ℋ )  →  ( ( 𝐴  ·ℎ  𝐶 )  ·ih  ( 𝐵  ·ℎ  𝐷 ) )  =  ( 𝐴  ·  ( 𝐶  ·ih  ( 𝐵  ·ℎ  𝐷 ) ) ) ) | 
						
							| 10 | 5 6 8 9 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ ) )  →  ( ( 𝐴  ·ℎ  𝐶 )  ·ih  ( 𝐵  ·ℎ  𝐷 ) )  =  ( 𝐴  ·  ( 𝐶  ·ih  ( 𝐵  ·ℎ  𝐷 ) ) ) ) | 
						
							| 11 |  | cjcl | ⊢ ( 𝐵  ∈  ℂ  →  ( ∗ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 12 | 11 | ad2antlr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ ) )  →  ( ∗ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 13 |  | hicl | ⊢ ( ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ )  →  ( 𝐶  ·ih  𝐷 )  ∈  ℂ ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ ) )  →  ( 𝐶  ·ih  𝐷 )  ∈  ℂ ) | 
						
							| 15 | 5 12 14 | mulassd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ ) )  →  ( ( 𝐴  ·  ( ∗ ‘ 𝐵 ) )  ·  ( 𝐶  ·ih  𝐷 ) )  =  ( 𝐴  ·  ( ( ∗ ‘ 𝐵 )  ·  ( 𝐶  ·ih  𝐷 ) ) ) ) | 
						
							| 16 | 4 10 15 | 3eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ ) )  →  ( ( 𝐴  ·ℎ  𝐶 )  ·ih  ( 𝐵  ·ℎ  𝐷 ) )  =  ( ( 𝐴  ·  ( ∗ ‘ 𝐵 ) )  ·  ( 𝐶  ·ih  𝐷 ) ) ) |