Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Inner product and norms
Inner product
his35i
Metamath Proof Explorer
Description: Move scalar multiplication to outside of inner product. (Contributed by NM , 1-Jul-2005) (Revised by Mario Carneiro , 15-May-2014)
(New usage is discouraged.)
Ref
Expression
Hypotheses
his35.1
⊢ 𝐴 ∈ ℂ
his35.2
⊢ 𝐵 ∈ ℂ
his35.3
⊢ 𝐶 ∈ ℋ
his35.4
⊢ 𝐷 ∈ ℋ
Assertion
his35i
⊢ ( ( 𝐴 · ℎ 𝐶 ) · ih ( 𝐵 · ℎ 𝐷 ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐵 ) ) · ( 𝐶 · ih 𝐷 ) )
Proof
Step
Hyp
Ref
Expression
1
his35.1
⊢ 𝐴 ∈ ℂ
2
his35.2
⊢ 𝐵 ∈ ℂ
3
his35.3
⊢ 𝐶 ∈ ℋ
4
his35.4
⊢ 𝐷 ∈ ℋ
5
his35
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 · ℎ 𝐶 ) · ih ( 𝐵 · ℎ 𝐷 ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐵 ) ) · ( 𝐶 · ih 𝐷 ) ) )
6
1 2 3 4 5
mp4an
⊢ ( ( 𝐴 · ℎ 𝐶 ) · ih ( 𝐵 · ℎ 𝐷 ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐵 ) ) · ( 𝐶 · ih 𝐷 ) )