Metamath Proof Explorer


Theorem his35i

Description: Move scalar multiplication to outside of inner product. (Contributed by NM, 1-Jul-2005) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses his35.1 𝐴 ∈ ℂ
his35.2 𝐵 ∈ ℂ
his35.3 𝐶 ∈ ℋ
his35.4 𝐷 ∈ ℋ
Assertion his35i ( ( 𝐴 · 𝐶 ) ·ih ( 𝐵 · 𝐷 ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐵 ) ) · ( 𝐶 ·ih 𝐷 ) )

Proof

Step Hyp Ref Expression
1 his35.1 𝐴 ∈ ℂ
2 his35.2 𝐵 ∈ ℂ
3 his35.3 𝐶 ∈ ℋ
4 his35.4 𝐷 ∈ ℋ
5 his35 ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 · 𝐶 ) ·ih ( 𝐵 · 𝐷 ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐵 ) ) · ( 𝐶 ·ih 𝐷 ) ) )
6 1 2 3 4 5 mp4an ( ( 𝐴 · 𝐶 ) ·ih ( 𝐵 · 𝐷 ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐵 ) ) · ( 𝐶 ·ih 𝐷 ) )