Step |
Hyp |
Ref |
Expression |
1 |
|
hvmulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) |
2 |
|
ax-his1 |
⊢ ( ( 𝐵 ∈ ℋ ∧ ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) → ( 𝐵 ·ih ( 𝐴 ·ℎ 𝐶 ) ) = ( ∗ ‘ ( ( 𝐴 ·ℎ 𝐶 ) ·ih 𝐵 ) ) ) |
3 |
1 2
|
sylan2 |
⊢ ( ( 𝐵 ∈ ℋ ∧ ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ) ) → ( 𝐵 ·ih ( 𝐴 ·ℎ 𝐶 ) ) = ( ∗ ‘ ( ( 𝐴 ·ℎ 𝐶 ) ·ih 𝐵 ) ) ) |
4 |
3
|
3impb |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ih ( 𝐴 ·ℎ 𝐶 ) ) = ( ∗ ‘ ( ( 𝐴 ·ℎ 𝐶 ) ·ih 𝐵 ) ) ) |
5 |
4
|
3com12 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ih ( 𝐴 ·ℎ 𝐶 ) ) = ( ∗ ‘ ( ( 𝐴 ·ℎ 𝐶 ) ·ih 𝐵 ) ) ) |
6 |
|
ax-his3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐶 ) ·ih 𝐵 ) = ( 𝐴 · ( 𝐶 ·ih 𝐵 ) ) ) |
7 |
6
|
3com23 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐶 ) ·ih 𝐵 ) = ( 𝐴 · ( 𝐶 ·ih 𝐵 ) ) ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ∗ ‘ ( ( 𝐴 ·ℎ 𝐶 ) ·ih 𝐵 ) ) = ( ∗ ‘ ( 𝐴 · ( 𝐶 ·ih 𝐵 ) ) ) ) |
9 |
|
hicl |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐶 ·ih 𝐵 ) ∈ ℂ ) |
10 |
|
cjmul |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ·ih 𝐵 ) ∈ ℂ ) → ( ∗ ‘ ( 𝐴 · ( 𝐶 ·ih 𝐵 ) ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ) ) |
11 |
9 10
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ) → ( ∗ ‘ ( 𝐴 · ( 𝐶 ·ih 𝐵 ) ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ) ) |
12 |
11
|
3impb |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∗ ‘ ( 𝐴 · ( 𝐶 ·ih 𝐵 ) ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ) ) |
13 |
12
|
3com23 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ∗ ‘ ( 𝐴 · ( 𝐶 ·ih 𝐵 ) ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ) ) |
14 |
|
ax-his1 |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ih 𝐶 ) = ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ) |
15 |
14
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ih 𝐶 ) = ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ) |
16 |
15
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( ∗ ‘ 𝐴 ) · ( 𝐵 ·ih 𝐶 ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ) ) |
17 |
13 16
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ∗ ‘ ( 𝐴 · ( 𝐶 ·ih 𝐵 ) ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝐵 ·ih 𝐶 ) ) ) |
18 |
5 8 17
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ih ( 𝐴 ·ℎ 𝐶 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝐵 ·ih 𝐶 ) ) ) |