| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cjcl | ⊢ ( 𝐴  ∈  ℂ  →  ( ∗ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 2 |  | his5 | ⊢ ( ( ( ∗ ‘ 𝐴 )  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝐵  ·ih  ( ( ∗ ‘ 𝐴 )  ·ℎ  𝐶 ) )  =  ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) )  ·  ( 𝐵  ·ih  𝐶 ) ) ) | 
						
							| 3 | 1 2 | syl3an1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝐵  ·ih  ( ( ∗ ‘ 𝐴 )  ·ℎ  𝐶 ) )  =  ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) )  ·  ( 𝐵  ·ih  𝐶 ) ) ) | 
						
							| 4 |  | cjcj | ⊢ ( 𝐴  ∈  ℂ  →  ( ∗ ‘ ( ∗ ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 5 | 4 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) )  ·  ( 𝐵  ·ih  𝐶 ) )  =  ( 𝐴  ·  ( 𝐵  ·ih  𝐶 ) ) ) | 
						
							| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) )  ·  ( 𝐵  ·ih  𝐶 ) )  =  ( 𝐴  ·  ( 𝐵  ·ih  𝐶 ) ) ) | 
						
							| 7 | 3 6 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝐵  ·ih  ( ( ∗ ‘ 𝐴 )  ·ℎ  𝐶 ) )  =  ( 𝐴  ·  ( 𝐵  ·ih  𝐶 ) ) ) |