Step |
Hyp |
Ref |
Expression |
1 |
|
ax-his4 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( 𝐴 ·ih 𝐴 ) ) |
2 |
1
|
gt0ne0d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 𝐴 ·ih 𝐴 ) ≠ 0 ) |
3 |
2
|
ex |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ → ( 𝐴 ·ih 𝐴 ) ≠ 0 ) ) |
4 |
3
|
necon4d |
⊢ ( 𝐴 ∈ ℋ → ( ( 𝐴 ·ih 𝐴 ) = 0 → 𝐴 = 0ℎ ) ) |
5 |
|
hi01 |
⊢ ( 𝐴 ∈ ℋ → ( 0ℎ ·ih 𝐴 ) = 0 ) |
6 |
|
oveq1 |
⊢ ( 𝐴 = 0ℎ → ( 𝐴 ·ih 𝐴 ) = ( 0ℎ ·ih 𝐴 ) ) |
7 |
6
|
eqeq1d |
⊢ ( 𝐴 = 0ℎ → ( ( 𝐴 ·ih 𝐴 ) = 0 ↔ ( 0ℎ ·ih 𝐴 ) = 0 ) ) |
8 |
5 7
|
syl5ibrcom |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 = 0ℎ → ( 𝐴 ·ih 𝐴 ) = 0 ) ) |
9 |
4 8
|
impbid |
⊢ ( 𝐴 ∈ ℋ → ( ( 𝐴 ·ih 𝐴 ) = 0 ↔ 𝐴 = 0ℎ ) ) |