Metamath Proof Explorer


Theorem his6

Description: Zero inner product with self means vector is zero. Lemma 3.1(S6) of Beran p. 95. (Contributed by NM, 27-Jul-1999) (New usage is discouraged.)

Ref Expression
Assertion his6 ( 𝐴 ∈ ℋ → ( ( 𝐴 ·ih 𝐴 ) = 0 ↔ 𝐴 = 0 ) )

Proof

Step Hyp Ref Expression
1 ax-his4 ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 ·ih 𝐴 ) )
2 1 gt0ne0d ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ·ih 𝐴 ) ≠ 0 )
3 2 ex ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0 → ( 𝐴 ·ih 𝐴 ) ≠ 0 ) )
4 3 necon4d ( 𝐴 ∈ ℋ → ( ( 𝐴 ·ih 𝐴 ) = 0 → 𝐴 = 0 ) )
5 hi01 ( 𝐴 ∈ ℋ → ( 0 ·ih 𝐴 ) = 0 )
6 oveq1 ( 𝐴 = 0 → ( 𝐴 ·ih 𝐴 ) = ( 0 ·ih 𝐴 ) )
7 6 eqeq1d ( 𝐴 = 0 → ( ( 𝐴 ·ih 𝐴 ) = 0 ↔ ( 0 ·ih 𝐴 ) = 0 ) )
8 5 7 syl5ibrcom ( 𝐴 ∈ ℋ → ( 𝐴 = 0 → ( 𝐴 ·ih 𝐴 ) = 0 ) )
9 4 8 impbid ( 𝐴 ∈ ℋ → ( ( 𝐴 ·ih 𝐴 ) = 0 ↔ 𝐴 = 0 ) )