| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ax-his4 | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  0  <  ( 𝐴  ·ih  𝐴 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							gt0ne0d | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( 𝐴  ·ih  𝐴 )  ≠  0 )  | 
						
						
							| 3 | 
							
								2
							 | 
							ex | 
							⊢ ( 𝐴  ∈   ℋ  →  ( 𝐴  ≠  0ℎ  →  ( 𝐴  ·ih  𝐴 )  ≠  0 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							necon4d | 
							⊢ ( 𝐴  ∈   ℋ  →  ( ( 𝐴  ·ih  𝐴 )  =  0  →  𝐴  =  0ℎ ) )  | 
						
						
							| 5 | 
							
								
							 | 
							hi01 | 
							⊢ ( 𝐴  ∈   ℋ  →  ( 0ℎ  ·ih  𝐴 )  =  0 )  | 
						
						
							| 6 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝐴  =  0ℎ  →  ( 𝐴  ·ih  𝐴 )  =  ( 0ℎ  ·ih  𝐴 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							eqeq1d | 
							⊢ ( 𝐴  =  0ℎ  →  ( ( 𝐴  ·ih  𝐴 )  =  0  ↔  ( 0ℎ  ·ih  𝐴 )  =  0 ) )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							syl5ibrcom | 
							⊢ ( 𝐴  ∈   ℋ  →  ( 𝐴  =  0ℎ  →  ( 𝐴  ·ih  𝐴 )  =  0 ) )  | 
						
						
							| 9 | 
							
								4 8
							 | 
							impbid | 
							⊢ ( 𝐴  ∈   ℋ  →  ( ( 𝐴  ·ih  𝐴 )  =  0  ↔  𝐴  =  0ℎ ) )  |