| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ax-his2 | 
							⊢ ( ( 𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ  ∧  𝐴  ∈   ℋ )  →  ( ( 𝐵  +ℎ  𝐶 )  ·ih  𝐴 )  =  ( ( 𝐵  ·ih  𝐴 )  +  ( 𝐶  ·ih  𝐴 ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							fveq2d | 
							⊢ ( ( 𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ  ∧  𝐴  ∈   ℋ )  →  ( ∗ ‘ ( ( 𝐵  +ℎ  𝐶 )  ·ih  𝐴 ) )  =  ( ∗ ‘ ( ( 𝐵  ·ih  𝐴 )  +  ( 𝐶  ·ih  𝐴 ) ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							hicl | 
							⊢ ( ( 𝐵  ∈   ℋ  ∧  𝐴  ∈   ℋ )  →  ( 𝐵  ·ih  𝐴 )  ∈  ℂ )  | 
						
						
							| 4 | 
							
								
							 | 
							hicl | 
							⊢ ( ( 𝐶  ∈   ℋ  ∧  𝐴  ∈   ℋ )  →  ( 𝐶  ·ih  𝐴 )  ∈  ℂ )  | 
						
						
							| 5 | 
							
								
							 | 
							cjadd | 
							⊢ ( ( ( 𝐵  ·ih  𝐴 )  ∈  ℂ  ∧  ( 𝐶  ·ih  𝐴 )  ∈  ℂ )  →  ( ∗ ‘ ( ( 𝐵  ·ih  𝐴 )  +  ( 𝐶  ·ih  𝐴 ) ) )  =  ( ( ∗ ‘ ( 𝐵  ·ih  𝐴 ) )  +  ( ∗ ‘ ( 𝐶  ·ih  𝐴 ) ) ) )  | 
						
						
							| 6 | 
							
								3 4 5
							 | 
							syl2an | 
							⊢ ( ( ( 𝐵  ∈   ℋ  ∧  𝐴  ∈   ℋ )  ∧  ( 𝐶  ∈   ℋ  ∧  𝐴  ∈   ℋ ) )  →  ( ∗ ‘ ( ( 𝐵  ·ih  𝐴 )  +  ( 𝐶  ·ih  𝐴 ) ) )  =  ( ( ∗ ‘ ( 𝐵  ·ih  𝐴 ) )  +  ( ∗ ‘ ( 𝐶  ·ih  𝐴 ) ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							3impdir | 
							⊢ ( ( 𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ  ∧  𝐴  ∈   ℋ )  →  ( ∗ ‘ ( ( 𝐵  ·ih  𝐴 )  +  ( 𝐶  ·ih  𝐴 ) ) )  =  ( ( ∗ ‘ ( 𝐵  ·ih  𝐴 ) )  +  ( ∗ ‘ ( 𝐶  ·ih  𝐴 ) ) ) )  | 
						
						
							| 8 | 
							
								2 7
							 | 
							eqtrd | 
							⊢ ( ( 𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ  ∧  𝐴  ∈   ℋ )  →  ( ∗ ‘ ( ( 𝐵  +ℎ  𝐶 )  ·ih  𝐴 ) )  =  ( ( ∗ ‘ ( 𝐵  ·ih  𝐴 ) )  +  ( ∗ ‘ ( 𝐶  ·ih  𝐴 ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							3comr | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( ∗ ‘ ( ( 𝐵  +ℎ  𝐶 )  ·ih  𝐴 ) )  =  ( ( ∗ ‘ ( 𝐵  ·ih  𝐴 ) )  +  ( ∗ ‘ ( 𝐶  ·ih  𝐴 ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							hvaddcl | 
							⊢ ( ( 𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝐵  +ℎ  𝐶 )  ∈   ℋ )  | 
						
						
							| 11 | 
							
								
							 | 
							ax-his1 | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  ( 𝐵  +ℎ  𝐶 )  ∈   ℋ )  →  ( 𝐴  ·ih  ( 𝐵  +ℎ  𝐶 ) )  =  ( ∗ ‘ ( ( 𝐵  +ℎ  𝐶 )  ·ih  𝐴 ) ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							sylan2 | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  ( 𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ ) )  →  ( 𝐴  ·ih  ( 𝐵  +ℎ  𝐶 ) )  =  ( ∗ ‘ ( ( 𝐵  +ℎ  𝐶 )  ·ih  𝐴 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							3impb | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝐴  ·ih  ( 𝐵  +ℎ  𝐶 ) )  =  ( ∗ ‘ ( ( 𝐵  +ℎ  𝐶 )  ·ih  𝐴 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							ax-his1 | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( 𝐴  ·ih  𝐵 )  =  ( ∗ ‘ ( 𝐵  ·ih  𝐴 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							3adant3 | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝐴  ·ih  𝐵 )  =  ( ∗ ‘ ( 𝐵  ·ih  𝐴 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							ax-his1 | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝐴  ·ih  𝐶 )  =  ( ∗ ‘ ( 𝐶  ·ih  𝐴 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							3adant2 | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝐴  ·ih  𝐶 )  =  ( ∗ ‘ ( 𝐶  ·ih  𝐴 ) ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							oveq12d | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐴  ·ih  𝐶 ) )  =  ( ( ∗ ‘ ( 𝐵  ·ih  𝐴 ) )  +  ( ∗ ‘ ( 𝐶  ·ih  𝐴 ) ) ) )  | 
						
						
							| 19 | 
							
								9 13 18
							 | 
							3eqtr4d | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝐴  ·ih  ( 𝐵  +ℎ  𝐶 ) )  =  ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐴  ·ih  𝐶 ) ) )  |