Step |
Hyp |
Ref |
Expression |
1 |
|
ax-his2 |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐵 +ℎ 𝐶 ) ·ih 𝐴 ) = ( ( 𝐵 ·ih 𝐴 ) + ( 𝐶 ·ih 𝐴 ) ) ) |
2 |
1
|
fveq2d |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ∗ ‘ ( ( 𝐵 +ℎ 𝐶 ) ·ih 𝐴 ) ) = ( ∗ ‘ ( ( 𝐵 ·ih 𝐴 ) + ( 𝐶 ·ih 𝐴 ) ) ) ) |
3 |
|
hicl |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐵 ·ih 𝐴 ) ∈ ℂ ) |
4 |
|
hicl |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐶 ·ih 𝐴 ) ∈ ℂ ) |
5 |
|
cjadd |
⊢ ( ( ( 𝐵 ·ih 𝐴 ) ∈ ℂ ∧ ( 𝐶 ·ih 𝐴 ) ∈ ℂ ) → ( ∗ ‘ ( ( 𝐵 ·ih 𝐴 ) + ( 𝐶 ·ih 𝐴 ) ) ) = ( ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) + ( ∗ ‘ ( 𝐶 ·ih 𝐴 ) ) ) ) |
6 |
3 4 5
|
syl2an |
⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ) ) → ( ∗ ‘ ( ( 𝐵 ·ih 𝐴 ) + ( 𝐶 ·ih 𝐴 ) ) ) = ( ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) + ( ∗ ‘ ( 𝐶 ·ih 𝐴 ) ) ) ) |
7 |
6
|
3impdir |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ∗ ‘ ( ( 𝐵 ·ih 𝐴 ) + ( 𝐶 ·ih 𝐴 ) ) ) = ( ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) + ( ∗ ‘ ( 𝐶 ·ih 𝐴 ) ) ) ) |
8 |
2 7
|
eqtrd |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ∗ ‘ ( ( 𝐵 +ℎ 𝐶 ) ·ih 𝐴 ) ) = ( ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) + ( ∗ ‘ ( 𝐶 ·ih 𝐴 ) ) ) ) |
9 |
8
|
3comr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ∗ ‘ ( ( 𝐵 +ℎ 𝐶 ) ·ih 𝐴 ) ) = ( ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) + ( ∗ ‘ ( 𝐶 ·ih 𝐴 ) ) ) ) |
10 |
|
hvaddcl |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 +ℎ 𝐶 ) ∈ ℋ ) |
11 |
|
ax-his1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐵 +ℎ 𝐶 ) ∈ ℋ ) → ( 𝐴 ·ih ( 𝐵 +ℎ 𝐶 ) ) = ( ∗ ‘ ( ( 𝐵 +ℎ 𝐶 ) ·ih 𝐴 ) ) ) |
12 |
10 11
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( 𝐴 ·ih ( 𝐵 +ℎ 𝐶 ) ) = ( ∗ ‘ ( ( 𝐵 +ℎ 𝐶 ) ·ih 𝐴 ) ) ) |
13 |
12
|
3impb |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ih ( 𝐵 +ℎ 𝐶 ) ) = ( ∗ ‘ ( ( 𝐵 +ℎ 𝐶 ) ·ih 𝐴 ) ) ) |
14 |
|
ax-his1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih 𝐵 ) = ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) ) |
15 |
14
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ih 𝐵 ) = ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) ) |
16 |
|
ax-his1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ih 𝐶 ) = ( ∗ ‘ ( 𝐶 ·ih 𝐴 ) ) ) |
17 |
16
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ih 𝐶 ) = ( ∗ ‘ ( 𝐶 ·ih 𝐴 ) ) ) |
18 |
15 17
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) + ( 𝐴 ·ih 𝐶 ) ) = ( ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) + ( ∗ ‘ ( 𝐶 ·ih 𝐴 ) ) ) ) |
19 |
9 13 18
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ih ( 𝐵 +ℎ 𝐶 ) ) = ( ( 𝐴 ·ih 𝐵 ) + ( 𝐴 ·ih 𝐶 ) ) ) |