| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hisubcom.1 |
⊢ 𝐴 ∈ ℋ |
| 2 |
|
hisubcom.2 |
⊢ 𝐵 ∈ ℋ |
| 3 |
|
hisubcom.3 |
⊢ 𝐶 ∈ ℋ |
| 4 |
|
hisubcom.4 |
⊢ 𝐷 ∈ ℋ |
| 5 |
2 1
|
hvnegdii |
⊢ ( - 1 ·ℎ ( 𝐵 −ℎ 𝐴 ) ) = ( 𝐴 −ℎ 𝐵 ) |
| 6 |
4 3
|
hvnegdii |
⊢ ( - 1 ·ℎ ( 𝐷 −ℎ 𝐶 ) ) = ( 𝐶 −ℎ 𝐷 ) |
| 7 |
5 6
|
oveq12i |
⊢ ( ( - 1 ·ℎ ( 𝐵 −ℎ 𝐴 ) ) ·ih ( - 1 ·ℎ ( 𝐷 −ℎ 𝐶 ) ) ) = ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐶 −ℎ 𝐷 ) ) |
| 8 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 9 |
2 1
|
hvsubcli |
⊢ ( 𝐵 −ℎ 𝐴 ) ∈ ℋ |
| 10 |
4 3
|
hvsubcli |
⊢ ( 𝐷 −ℎ 𝐶 ) ∈ ℋ |
| 11 |
8 8 9 10
|
his35i |
⊢ ( ( - 1 ·ℎ ( 𝐵 −ℎ 𝐴 ) ) ·ih ( - 1 ·ℎ ( 𝐷 −ℎ 𝐶 ) ) ) = ( ( - 1 · ( ∗ ‘ - 1 ) ) · ( ( 𝐵 −ℎ 𝐴 ) ·ih ( 𝐷 −ℎ 𝐶 ) ) ) |
| 12 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
| 13 |
|
cjre |
⊢ ( - 1 ∈ ℝ → ( ∗ ‘ - 1 ) = - 1 ) |
| 14 |
12 13
|
ax-mp |
⊢ ( ∗ ‘ - 1 ) = - 1 |
| 15 |
14
|
oveq2i |
⊢ ( - 1 · ( ∗ ‘ - 1 ) ) = ( - 1 · - 1 ) |
| 16 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 17 |
16 16
|
mul2negi |
⊢ ( - 1 · - 1 ) = ( 1 · 1 ) |
| 18 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
| 19 |
15 17 18
|
3eqtri |
⊢ ( - 1 · ( ∗ ‘ - 1 ) ) = 1 |
| 20 |
19
|
oveq1i |
⊢ ( ( - 1 · ( ∗ ‘ - 1 ) ) · ( ( 𝐵 −ℎ 𝐴 ) ·ih ( 𝐷 −ℎ 𝐶 ) ) ) = ( 1 · ( ( 𝐵 −ℎ 𝐴 ) ·ih ( 𝐷 −ℎ 𝐶 ) ) ) |
| 21 |
9 10
|
hicli |
⊢ ( ( 𝐵 −ℎ 𝐴 ) ·ih ( 𝐷 −ℎ 𝐶 ) ) ∈ ℂ |
| 22 |
21
|
mullidi |
⊢ ( 1 · ( ( 𝐵 −ℎ 𝐴 ) ·ih ( 𝐷 −ℎ 𝐶 ) ) ) = ( ( 𝐵 −ℎ 𝐴 ) ·ih ( 𝐷 −ℎ 𝐶 ) ) |
| 23 |
11 20 22
|
3eqtri |
⊢ ( ( - 1 ·ℎ ( 𝐵 −ℎ 𝐴 ) ) ·ih ( - 1 ·ℎ ( 𝐷 −ℎ 𝐶 ) ) ) = ( ( 𝐵 −ℎ 𝐴 ) ·ih ( 𝐷 −ℎ 𝐶 ) ) |
| 24 |
7 23
|
eqtr3i |
⊢ ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐶 −ℎ 𝐷 ) ) = ( ( 𝐵 −ℎ 𝐴 ) ·ih ( 𝐷 −ℎ 𝐶 ) ) |