Metamath Proof Explorer


Theorem hisubcomi

Description: Two vector subtractions simultaneously commute in an inner product. (Contributed by NM, 1-Jul-2005) (New usage is discouraged.)

Ref Expression
Hypotheses hisubcom.1 𝐴 ∈ ℋ
hisubcom.2 𝐵 ∈ ℋ
hisubcom.3 𝐶 ∈ ℋ
hisubcom.4 𝐷 ∈ ℋ
Assertion hisubcomi ( ( 𝐴 𝐵 ) ·ih ( 𝐶 𝐷 ) ) = ( ( 𝐵 𝐴 ) ·ih ( 𝐷 𝐶 ) )

Proof

Step Hyp Ref Expression
1 hisubcom.1 𝐴 ∈ ℋ
2 hisubcom.2 𝐵 ∈ ℋ
3 hisubcom.3 𝐶 ∈ ℋ
4 hisubcom.4 𝐷 ∈ ℋ
5 2 1 hvnegdii ( - 1 · ( 𝐵 𝐴 ) ) = ( 𝐴 𝐵 )
6 4 3 hvnegdii ( - 1 · ( 𝐷 𝐶 ) ) = ( 𝐶 𝐷 )
7 5 6 oveq12i ( ( - 1 · ( 𝐵 𝐴 ) ) ·ih ( - 1 · ( 𝐷 𝐶 ) ) ) = ( ( 𝐴 𝐵 ) ·ih ( 𝐶 𝐷 ) )
8 neg1cn - 1 ∈ ℂ
9 2 1 hvsubcli ( 𝐵 𝐴 ) ∈ ℋ
10 4 3 hvsubcli ( 𝐷 𝐶 ) ∈ ℋ
11 8 8 9 10 his35i ( ( - 1 · ( 𝐵 𝐴 ) ) ·ih ( - 1 · ( 𝐷 𝐶 ) ) ) = ( ( - 1 · ( ∗ ‘ - 1 ) ) · ( ( 𝐵 𝐴 ) ·ih ( 𝐷 𝐶 ) ) )
12 neg1rr - 1 ∈ ℝ
13 cjre ( - 1 ∈ ℝ → ( ∗ ‘ - 1 ) = - 1 )
14 12 13 ax-mp ( ∗ ‘ - 1 ) = - 1
15 14 oveq2i ( - 1 · ( ∗ ‘ - 1 ) ) = ( - 1 · - 1 )
16 ax-1cn 1 ∈ ℂ
17 16 16 mul2negi ( - 1 · - 1 ) = ( 1 · 1 )
18 1t1e1 ( 1 · 1 ) = 1
19 15 17 18 3eqtri ( - 1 · ( ∗ ‘ - 1 ) ) = 1
20 19 oveq1i ( ( - 1 · ( ∗ ‘ - 1 ) ) · ( ( 𝐵 𝐴 ) ·ih ( 𝐷 𝐶 ) ) ) = ( 1 · ( ( 𝐵 𝐴 ) ·ih ( 𝐷 𝐶 ) ) )
21 9 10 hicli ( ( 𝐵 𝐴 ) ·ih ( 𝐷 𝐶 ) ) ∈ ℂ
22 21 mulid2i ( 1 · ( ( 𝐵 𝐴 ) ·ih ( 𝐷 𝐶 ) ) ) = ( ( 𝐵 𝐴 ) ·ih ( 𝐷 𝐶 ) )
23 11 20 22 3eqtri ( ( - 1 · ( 𝐵 𝐴 ) ) ·ih ( - 1 · ( 𝐷 𝐶 ) ) ) = ( ( 𝐵 𝐴 ) ·ih ( 𝐷 𝐶 ) )
24 7 23 eqtr3i ( ( 𝐴 𝐵 ) ·ih ( 𝐶 𝐷 ) ) = ( ( 𝐵 𝐴 ) ·ih ( 𝐷 𝐶 ) )