Metamath Proof Explorer


Theorem hl0cl

Description: The Hilbert space zero vector. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hl0cl.1 𝑋 = ( BaseSet ‘ 𝑈 )
hl0cl.5 𝑍 = ( 0vec𝑈 )
Assertion hl0cl ( 𝑈 ∈ CHilOLD𝑍𝑋 )

Proof

Step Hyp Ref Expression
1 hl0cl.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 hl0cl.5 𝑍 = ( 0vec𝑈 )
3 hlnv ( 𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec )
4 1 2 nvzcl ( 𝑈 ∈ NrmCVec → 𝑍𝑋 )
5 3 4 syl ( 𝑈 ∈ CHilOLD𝑍𝑋 )