| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							hl0lt1.s | 
							⊢  <   =  ( lt ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							hl0lt1.z | 
							⊢  0   =  ( 0. ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							hl0lt1.u | 
							⊢  1   =  ( 1. ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								4 1 2 3
							 | 
							hlhgt2 | 
							⊢ ( 𝐾  ∈  HL  →  ∃ 𝑥  ∈  ( Base ‘ 𝐾 ) (  0   <  𝑥  ∧  𝑥  <   1  ) )  | 
						
						
							| 6 | 
							
								
							 | 
							hlpos | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Poset )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑥  ∈  ( Base ‘ 𝐾 ) )  →  𝐾  ∈  Poset )  | 
						
						
							| 8 | 
							
								
							 | 
							hlop | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑥  ∈  ( Base ‘ 𝐾 ) )  →  𝐾  ∈  OP )  | 
						
						
							| 10 | 
							
								4 2
							 | 
							op0cl | 
							⊢ ( 𝐾  ∈  OP  →   0   ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							syl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑥  ∈  ( Base ‘ 𝐾 ) )  →   0   ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑥  ∈  ( Base ‘ 𝐾 ) )  →  𝑥  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 13 | 
							
								4 3
							 | 
							op1cl | 
							⊢ ( 𝐾  ∈  OP  →   1   ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 14 | 
							
								9 13
							 | 
							syl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑥  ∈  ( Base ‘ 𝐾 ) )  →   1   ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 15 | 
							
								4 1
							 | 
							plttr | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  (  0   ∈  ( Base ‘ 𝐾 )  ∧  𝑥  ∈  ( Base ‘ 𝐾 )  ∧   1   ∈  ( Base ‘ 𝐾 ) ) )  →  ( (  0   <  𝑥  ∧  𝑥  <   1  )  →   0   <   1  ) )  | 
						
						
							| 16 | 
							
								7 11 12 14 15
							 | 
							syl13anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑥  ∈  ( Base ‘ 𝐾 ) )  →  ( (  0   <  𝑥  ∧  𝑥  <   1  )  →   0   <   1  ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							rexlimdva | 
							⊢ ( 𝐾  ∈  HL  →  ( ∃ 𝑥  ∈  ( Base ‘ 𝐾 ) (  0   <  𝑥  ∧  𝑥  <   1  )  →   0   <   1  ) )  | 
						
						
							| 18 | 
							
								5 17
							 | 
							mpd | 
							⊢ ( 𝐾  ∈  HL  →   0   <   1  )  |