Metamath Proof Explorer


Theorem hladdf

Description: Mapping for Hilbert space vector addition. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hladdf.1 𝑋 = ( BaseSet ‘ 𝑈 )
hladdf.2 𝐺 = ( +𝑣𝑈 )
Assertion hladdf ( 𝑈 ∈ CHilOLD𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 )

Proof

Step Hyp Ref Expression
1 hladdf.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 hladdf.2 𝐺 = ( +𝑣𝑈 )
3 hlnv ( 𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec )
4 1 2 nvgf ( 𝑈 ∈ NrmCVec → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 )
5 3 4 syl ( 𝑈 ∈ CHilOLD𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 )