Description: Hilbert space addition with the zero vector. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hladdid.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| hladdid.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| hladdid.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | ||
| Assertion | hladdid | ⊢ ( ( 𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑍 ) = 𝐴 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hladdid.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | hladdid.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | hladdid.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
| 4 | hlnv | ⊢ ( 𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec ) | |
| 5 | 1 2 3 | nv0rid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑍 ) = 𝐴 ) | 
| 6 | 4 5 | sylan | ⊢ ( ( 𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑍 ) = 𝐴 ) |