Metamath Proof Explorer


Theorem hlass

Description: Hilbert space vector addition is associative. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hladdf.1 𝑋 = ( BaseSet ‘ 𝑈 )
hladdf.2 𝐺 = ( +𝑣𝑈 )
Assertion hlass ( ( 𝑈 ∈ CHilOLD ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( 𝐴 𝐺 ( 𝐵 𝐺 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 hladdf.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 hladdf.2 𝐺 = ( +𝑣𝑈 )
3 hlnv ( 𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec )
4 1 2 nvass ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( 𝐴 𝐺 ( 𝐵 𝐺 𝐶 ) ) )
5 3 4 sylan ( ( 𝑈 ∈ CHilOLD ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( 𝐴 𝐺 ( 𝐵 𝐺 𝐶 ) ) )