Metamath Proof Explorer


Theorem hlatcon2

Description: Atom exchange combined with contraposition. (Contributed by NM, 13-Jun-2012)

Ref Expression
Hypotheses 3noncol.l = ( le ‘ 𝐾 )
3noncol.j = ( join ‘ 𝐾 )
3noncol.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion hlatcon2 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ¬ 𝑃 ( 𝑅 𝑄 ) )

Proof

Step Hyp Ref Expression
1 3noncol.l = ( le ‘ 𝐾 )
2 3noncol.j = ( join ‘ 𝐾 )
3 3noncol.a 𝐴 = ( Atoms ‘ 𝐾 )
4 1 2 3 hlatcon3 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ¬ 𝑃 ( 𝑄 𝑅 ) )
5 simp1 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ HL )
6 simp22 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑄𝐴 )
7 simp23 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑅𝐴 )
8 2 3 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴 ) → ( 𝑄 𝑅 ) = ( 𝑅 𝑄 ) )
9 5 6 7 8 syl3anc ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑄 𝑅 ) = ( 𝑅 𝑄 ) )
10 9 breq2d ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑃 ( 𝑄 𝑅 ) ↔ 𝑃 ( 𝑅 𝑄 ) ) )
11 4 10 mtbid ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ¬ 𝑃 ( 𝑅 𝑄 ) )