Metamath Proof Explorer


Theorem hlatcon3

Description: Atom exchange combined with contraposition. (Contributed by NM, 13-Jun-2012)

Ref Expression
Hypotheses 3noncol.l = ( le ‘ 𝐾 )
3noncol.j = ( join ‘ 𝐾 )
3noncol.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion hlatcon3 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ¬ 𝑃 ( 𝑄 𝑅 ) )

Proof

Step Hyp Ref Expression
1 3noncol.l = ( le ‘ 𝐾 )
2 3noncol.j = ( join ‘ 𝐾 )
3 3noncol.a 𝐴 = ( Atoms ‘ 𝐾 )
4 1 2 3 3noncolr2 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑄𝑅 ∧ ¬ 𝑃 ( 𝑄 𝑅 ) ) )
5 4 simprd ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ¬ 𝑃 ( 𝑄 𝑅 ) )