Metamath Proof Explorer
		
		
		
		Description:  Atom exchange combined with contraposition.  (Contributed by NM, 13-Jun-2012)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | 3noncol.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
					
						|  |  | 3noncol.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
					
						|  |  | 3noncol.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
				
					|  | Assertion | hlatcon3 | ⊢  ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑃  ≤  ( 𝑄  ∨  𝑅 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3noncol.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | 3noncol.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | 3noncol.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 4 | 1 2 3 | 3noncolr2 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑄  ≠  𝑅  ∧  ¬  𝑃  ≤  ( 𝑄  ∨  𝑅 ) ) ) | 
						
							| 5 | 4 | simprd | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑃  ≤  ( 𝑄  ∨  𝑅 ) ) |