Metamath Proof Explorer
Description: Atom exchange combined with contraposition. (Contributed by NM, 13-Jun-2012)
|
|
Ref |
Expression |
|
Hypotheses |
3noncol.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
|
|
3noncol.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
|
|
3noncol.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
|
Assertion |
hlatcon3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3noncol.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
3noncol.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
3noncol.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
1 2 3
|
3noncolr2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
5 |
4
|
simprd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) |