| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							hlatjcom.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							hlatjcom.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							hllat | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 5 | 
							
								
							 | 
							simpr1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								6 2
							 | 
							atbase | 
							⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							syl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simpr2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 10 | 
							
								6 2
							 | 
							atbase | 
							⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							syl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simpr3 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 13 | 
							
								6 2
							 | 
							atbase | 
							⊢ ( 𝑅  ∈  𝐴  →  𝑅  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							syl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝑅  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 15 | 
							
								6 1
							 | 
							latj32 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  ( Base ‘ 𝐾 )  ∧  𝑅  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 )  =  ( ( 𝑃  ∨  𝑅 )  ∨  𝑄 ) )  | 
						
						
							| 16 | 
							
								4 8 11 14 15
							 | 
							syl13anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 )  =  ( ( 𝑃  ∨  𝑅 )  ∨  𝑄 ) )  |