Description: Commutatitivity of join operation. Frequently-used special case of latjcom for atoms. (Contributed by NM, 15-Jun-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hlatjcom.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
hlatjcom.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
Assertion | hlatjcom | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 ∨ 𝑌 ) = ( 𝑌 ∨ 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlatjcom.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
2 | hlatjcom.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
3 | hllat | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) | |
4 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
5 | 4 2 | atbase | ⊢ ( 𝑋 ∈ 𝐴 → 𝑋 ∈ ( Base ‘ 𝐾 ) ) |
6 | 4 2 | atbase | ⊢ ( 𝑌 ∈ 𝐴 → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
7 | 4 1 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑋 ∨ 𝑌 ) = ( 𝑌 ∨ 𝑋 ) ) |
8 | 3 5 6 7 | syl3an | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 ∨ 𝑌 ) = ( 𝑌 ∨ 𝑋 ) ) |