Metamath Proof Explorer


Theorem hlatjcom

Description: Commutatitivity of join operation. Frequently-used special case of latjcom for atoms. (Contributed by NM, 15-Jun-2012)

Ref Expression
Hypotheses hlatjcom.j = ( join ‘ 𝐾 )
hlatjcom.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) → ( 𝑋 𝑌 ) = ( 𝑌 𝑋 ) )

Proof

Step Hyp Ref Expression
1 hlatjcom.j = ( join ‘ 𝐾 )
2 hlatjcom.a 𝐴 = ( Atoms ‘ 𝐾 )
3 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
4 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
5 4 2 atbase ( 𝑋𝐴𝑋 ∈ ( Base ‘ 𝐾 ) )
6 4 2 atbase ( 𝑌𝐴𝑌 ∈ ( Base ‘ 𝐾 ) )
7 4 1 latjcom ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑋 𝑌 ) = ( 𝑌 𝑋 ) )
8 3 5 6 7 syl3an ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) → ( 𝑋 𝑌 ) = ( 𝑌 𝑋 ) )