Metamath Proof Explorer


Theorem hlatjrot

Description: Rotate lattice join of 3 classes. Frequently-used special case of latjrot for atoms. (Contributed by NM, 2-Aug-2012)

Ref Expression
Hypotheses hlatjcom.j = ( join ‘ 𝐾 )
hlatjcom.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion hlatjrot ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → ( ( 𝑃 𝑄 ) 𝑅 ) = ( ( 𝑅 𝑃 ) 𝑄 ) )

Proof

Step Hyp Ref Expression
1 hlatjcom.j = ( join ‘ 𝐾 )
2 hlatjcom.a 𝐴 = ( Atoms ‘ 𝐾 )
3 1 2 hlatj32 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → ( ( 𝑃 𝑄 ) 𝑅 ) = ( ( 𝑃 𝑅 ) 𝑄 ) )
4 1 2 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴 ) → ( 𝑃 𝑅 ) = ( 𝑅 𝑃 ) )
5 4 3adant3r2 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → ( 𝑃 𝑅 ) = ( 𝑅 𝑃 ) )
6 5 oveq1d ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → ( ( 𝑃 𝑅 ) 𝑄 ) = ( ( 𝑅 𝑃 ) 𝑄 ) )
7 3 6 eqtrd ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → ( ( 𝑃 𝑄 ) 𝑅 ) = ( ( 𝑅 𝑃 ) 𝑄 ) )