Metamath Proof Explorer


Theorem hlatle

Description: The ordering of two Hilbert lattice elements is determined by the atoms under them. ( chrelat3 analog.) (Contributed by NM, 4-Nov-2011)

Ref Expression
Hypotheses hlatle.b 𝐵 = ( Base ‘ 𝐾 )
hlatle.l = ( le ‘ 𝐾 )
hlatle.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion hlatle ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ↔ ∀ 𝑝𝐴 ( 𝑝 𝑋𝑝 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 hlatle.b 𝐵 = ( Base ‘ 𝐾 )
2 hlatle.l = ( le ‘ 𝐾 )
3 hlatle.a 𝐴 = ( Atoms ‘ 𝐾 )
4 hlomcmat ( 𝐾 ∈ HL → ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) )
5 1 2 3 atlatle ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ↔ ∀ 𝑝𝐴 ( 𝑝 𝑋𝑝 𝑌 ) ) )
6 4 5 syl3an1 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ↔ ∀ 𝑝𝐴 ( 𝑝 𝑋𝑝 𝑌 ) ) )