Description: The ordering of two Hilbert lattice elements is determined by the atoms under them. ( chrelat3 analog.) (Contributed by NM, 4-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlatle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| hlatle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| hlatle.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | hlatle | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlatle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | hlatle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | hlatle.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | hlomcmat | ⊢ ( 𝐾 ∈ HL → ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ) | |
| 5 | 1 2 3 | atlatle | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) ) ) |
| 6 | 4 5 | syl3an1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) ) ) |