Description: A join's second argument is less than or equal to the join. Special case of latlej2 to show an atom is on a line. (Contributed by NM, 15-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlatlej.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| hlatlej.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| hlatlej.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | hlatlej2 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlatlej.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | hlatlej.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | hlatlej.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | 1 2 3 | hlatlej1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → 𝑄 ≤ ( 𝑄 ∨ 𝑃 ) ) |
| 5 | 4 | 3com23 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ≤ ( 𝑄 ∨ 𝑃 ) ) |
| 6 | 2 3 | hlatjcom | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
| 7 | 5 6 | breqtrrd | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ) |