Description: Every subcomplex Hilbert space is a Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hlbn | ⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ Ban ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ishl | ⊢ ( 𝑊 ∈ ℂHil ↔ ( 𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil ) ) | |
| 2 | 1 | simplbi | ⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ Ban ) |