Description: Every subcomplex Hilbert space is a Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | hlbn | ⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ Ban ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishl | ⊢ ( 𝑊 ∈ ℂHil ↔ ( 𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil ) ) | |
2 | 1 | simplbi | ⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ Ban ) |