Step |
Hyp |
Ref |
Expression |
1 |
|
ishlg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ishlg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
ishlg.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
4 |
|
ishlg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
5 |
|
ishlg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
6 |
|
ishlg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
7 |
|
hlln.1 |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
8 |
|
hltr.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
9 |
|
hlbtwn.1 |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐶 𝐼 𝐵 ) ) |
10 |
|
hlbtwn.2 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
11 |
|
hlbtwn.3 |
⊢ ( 𝜑 → 𝐷 ≠ 𝐶 ) |
12 |
10 11
|
2thd |
⊢ ( 𝜑 → ( 𝐵 ≠ 𝐶 ↔ 𝐷 ≠ 𝐶 ) ) |
13 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
14 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐶 ∈ 𝑃 ) |
15 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
16 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐷 ∈ 𝑃 ) |
17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) |
19 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐷 ∈ ( 𝐶 𝐼 𝐵 ) ) |
20 |
1 2 13 14 15 16 17 18 19
|
tgbtwnconn3 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → ( 𝐴 ∈ ( 𝐶 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐶 𝐼 𝐴 ) ) ) |
21 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
22 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐺 ∈ TarskiG ) |
23 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐶 ∈ 𝑃 ) |
24 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐷 ∈ 𝑃 ) |
25 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐵 ∈ 𝑃 ) |
26 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐴 ∈ 𝑃 ) |
27 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐷 ∈ ( 𝐶 𝐼 𝐵 ) ) |
28 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) |
29 |
1 21 2 22 23 24 25 26 27 28
|
tgbtwnexch |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐷 ∈ ( 𝐶 𝐼 𝐴 ) ) |
30 |
29
|
olcd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → ( 𝐴 ∈ ( 𝐶 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐶 𝐼 𝐴 ) ) ) |
31 |
20 30
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) → ( 𝐴 ∈ ( 𝐶 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐶 𝐼 𝐴 ) ) ) |
32 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐷 ) ) → 𝐺 ∈ TarskiG ) |
33 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐷 ) ) → 𝐶 ∈ 𝑃 ) |
34 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐷 ) ) → 𝐴 ∈ 𝑃 ) |
35 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐷 ) ) → 𝐷 ∈ 𝑃 ) |
36 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐷 ) ) → 𝐵 ∈ 𝑃 ) |
37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐷 ) ) → 𝐴 ∈ ( 𝐶 𝐼 𝐷 ) ) |
38 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐷 ) ) → 𝐷 ∈ ( 𝐶 𝐼 𝐵 ) ) |
39 |
1 21 2 32 33 34 35 36 37 38
|
tgbtwnexch |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐷 ) ) → 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) |
40 |
39
|
orcd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐷 ) ) → ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) |
41 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐺 ∈ TarskiG ) |
42 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐶 ∈ 𝑃 ) |
43 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐷 ∈ 𝑃 ) |
44 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐴 ∈ 𝑃 ) |
45 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐵 ∈ 𝑃 ) |
46 |
11
|
necomd |
⊢ ( 𝜑 → 𝐶 ≠ 𝐷 ) |
47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐶 ≠ 𝐷 ) |
48 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐷 ∈ ( 𝐶 𝐼 𝐴 ) ) |
49 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐷 ∈ ( 𝐶 𝐼 𝐵 ) ) |
50 |
1 2 41 42 43 44 45 47 48 49
|
tgbtwnconn1 |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐶 𝐼 𝐴 ) ) → ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) |
51 |
40 50
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐶 𝐼 𝐴 ) ) ) → ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) |
52 |
31 51
|
impbida |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ↔ ( 𝐴 ∈ ( 𝐶 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ) |
53 |
12 52
|
3anbi23d |
⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ↔ ( 𝐴 ≠ 𝐶 ∧ 𝐷 ≠ 𝐶 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ) ) |
54 |
1 2 3 4 5 6 7
|
ishlg |
⊢ ( 𝜑 → ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ↔ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ) ) |
55 |
1 2 3 4 8 6 7
|
ishlg |
⊢ ( 𝜑 → ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐷 ↔ ( 𝐴 ≠ 𝐶 ∧ 𝐷 ≠ 𝐶 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ) ) |
56 |
53 54 55
|
3bitr4d |
⊢ ( 𝜑 → ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ↔ 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐷 ) ) |