| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ishlg.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							ishlg.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							ishlg.k | 
							⊢ 𝐾  =  ( hlG ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							ishlg.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑃 )  | 
						
						
							| 5 | 
							
								
							 | 
							ishlg.b | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑃 )  | 
						
						
							| 6 | 
							
								
							 | 
							ishlg.c | 
							⊢ ( 𝜑  →  𝐶  ∈  𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							hlln.1 | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 8 | 
							
								
							 | 
							hltr.d | 
							⊢ ( 𝜑  →  𝐷  ∈  𝑃 )  | 
						
						
							| 9 | 
							
								
							 | 
							hlcgrex.m | 
							⊢  −   =  ( dist ‘ 𝐺 )  | 
						
						
							| 10 | 
							
								
							 | 
							hlcgrex.1 | 
							⊢ ( 𝜑  →  𝐷  ≠  𝐴 )  | 
						
						
							| 11 | 
							
								
							 | 
							hlcgrex.2 | 
							⊢ ( 𝜑  →  𝐵  ≠  𝐶 )  | 
						
						
							| 12 | 
							
								
							 | 
							hlcgreulem.x | 
							⊢ ( 𝜑  →  𝑋  ∈  𝑃 )  | 
						
						
							| 13 | 
							
								
							 | 
							hlcgreulem.y | 
							⊢ ( 𝜑  →  𝑌  ∈  𝑃 )  | 
						
						
							| 14 | 
							
								
							 | 
							hlcgreulem.1 | 
							⊢ ( 𝜑  →  𝑋 ( 𝐾 ‘ 𝐴 ) 𝐷 )  | 
						
						
							| 15 | 
							
								
							 | 
							hlcgreulem.2 | 
							⊢ ( 𝜑  →  𝑌 ( 𝐾 ‘ 𝐴 ) 𝐷 )  | 
						
						
							| 16 | 
							
								
							 | 
							hlcgreulem.3 | 
							⊢ ( 𝜑  →  ( 𝐴  −  𝑋 )  =  ( 𝐵  −  𝐶 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							hlcgreulem.4 | 
							⊢ ( 𝜑  →  ( 𝐴  −  𝑌 )  =  ( 𝐵  −  𝐶 ) )  | 
						
						
							| 18 | 
							
								7
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐺  ∈  TarskiG )  | 
						
						
							| 19 | 
							
								4
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐴  ∈  𝑃 )  | 
						
						
							| 20 | 
							
								5
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐵  ∈  𝑃 )  | 
						
						
							| 21 | 
							
								6
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐶  ∈  𝑃 )  | 
						
						
							| 22 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝑦  ∈  𝑃 )  | 
						
						
							| 23 | 
							
								12
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝑋  ∈  𝑃 )  | 
						
						
							| 24 | 
							
								13
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝑌  ∈  𝑃 )  | 
						
						
							| 25 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐴  ≠  𝑦 )  | 
						
						
							| 26 | 
							
								25
							 | 
							necomd | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝑦  ≠  𝐴 )  | 
						
						
							| 27 | 
							
								8
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐷  ∈  𝑃 )  | 
						
						
							| 28 | 
							
								1 2 3 12 8 4 7 14
							 | 
							hlcomd | 
							⊢ ( 𝜑  →  𝐷 ( 𝐾 ‘ 𝐴 ) 𝑋 )  | 
						
						
							| 29 | 
							
								28
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐷 ( 𝐾 ‘ 𝐴 ) 𝑋 )  | 
						
						
							| 30 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐴  ∈  ( 𝐷 𝐼 𝑦 ) )  | 
						
						
							| 31 | 
							
								1 2 3 27 23 22 18 19 29 30
							 | 
							btwnhl | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐴  ∈  ( 𝑋 𝐼 𝑦 ) )  | 
						
						
							| 32 | 
							
								1 9 2 18 23 19 22 31
							 | 
							tgbtwncom | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐴  ∈  ( 𝑦 𝐼 𝑋 ) )  | 
						
						
							| 33 | 
							
								1 2 3 13 8 4 7 15
							 | 
							hlcomd | 
							⊢ ( 𝜑  →  𝐷 ( 𝐾 ‘ 𝐴 ) 𝑌 )  | 
						
						
							| 34 | 
							
								33
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐷 ( 𝐾 ‘ 𝐴 ) 𝑌 )  | 
						
						
							| 35 | 
							
								1 2 3 27 24 22 18 19 34 30
							 | 
							btwnhl | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐴  ∈  ( 𝑌 𝐼 𝑦 ) )  | 
						
						
							| 36 | 
							
								1 9 2 18 24 19 22 35
							 | 
							tgbtwncom | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝐴  ∈  ( 𝑦 𝐼 𝑌 ) )  | 
						
						
							| 37 | 
							
								16
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  ( 𝐴  −  𝑋 )  =  ( 𝐵  −  𝐶 ) )  | 
						
						
							| 38 | 
							
								17
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  ( 𝐴  −  𝑌 )  =  ( 𝐵  −  𝐶 ) )  | 
						
						
							| 39 | 
							
								1 9 2 18 19 20 21 22 23 24 26 32 36 37 38
							 | 
							tgsegconeq | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  →  𝑋  =  𝑌 )  | 
						
						
							| 40 | 
							
								1
							 | 
							fvexi | 
							⊢ 𝑃  ∈  V  | 
						
						
							| 41 | 
							
								40
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝑃  ∈  V )  | 
						
						
							| 42 | 
							
								41 5 6 11
							 | 
							nehash2 | 
							⊢ ( 𝜑  →  2  ≤  ( ♯ ‘ 𝑃 ) )  | 
						
						
							| 43 | 
							
								1 9 2 7 8 4 42
							 | 
							tgbtwndiff | 
							⊢ ( 𝜑  →  ∃ 𝑦  ∈  𝑃 ( 𝐴  ∈  ( 𝐷 𝐼 𝑦 )  ∧  𝐴  ≠  𝑦 ) )  | 
						
						
							| 44 | 
							
								39 43
							 | 
							r19.29a | 
							⊢ ( 𝜑  →  𝑋  =  𝑌 )  |