Metamath Proof Explorer


Theorem hlcmet

Description: The induced metric on a complex Hilbert space is complete. (Contributed by NM, 8-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlcmet.x 𝑋 = ( BaseSet ‘ 𝑈 )
hlcmet.8 𝐷 = ( IndMet ‘ 𝑈 )
Assertion hlcmet ( 𝑈 ∈ CHilOLD𝐷 ∈ ( CMet ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 hlcmet.x 𝑋 = ( BaseSet ‘ 𝑈 )
2 hlcmet.8 𝐷 = ( IndMet ‘ 𝑈 )
3 hlobn ( 𝑈 ∈ CHilOLD𝑈 ∈ CBan )
4 1 2 cbncms ( 𝑈 ∈ CBan → 𝐷 ∈ ( CMet ‘ 𝑋 ) )
5 3 4 syl ( 𝑈 ∈ CHilOLD𝐷 ∈ ( CMet ‘ 𝑋 ) )