Metamath Proof Explorer
Description: The induced metric on a complex Hilbert space is complete. (Contributed by NM, 8-Sep-2007) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
hlcmet.x |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
|
|
hlcmet.8 |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
|
Assertion |
hlcmet |
⊢ ( 𝑈 ∈ CHilOLD → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hlcmet.x |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
| 2 |
|
hlcmet.8 |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
| 3 |
|
hlobn |
⊢ ( 𝑈 ∈ CHilOLD → 𝑈 ∈ CBan ) |
| 4 |
1 2
|
cbncms |
⊢ ( 𝑈 ∈ CBan → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 5 |
3 4
|
syl |
⊢ ( 𝑈 ∈ CHilOLD → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |