Metamath Proof Explorer


Theorem hlcms

Description: Every subcomplex Hilbert space is a complete metric space. (Contributed by Mario Carneiro, 17-Oct-2015)

Ref Expression
Assertion hlcms ( 𝑊 ∈ ℂHil → 𝑊 ∈ CMetSp )

Proof

Step Hyp Ref Expression
1 hlbn ( 𝑊 ∈ ℂHil → 𝑊 ∈ Ban )
2 bncms ( 𝑊 ∈ Ban → 𝑊 ∈ CMetSp )
3 1 2 syl ( 𝑊 ∈ ℂHil → 𝑊 ∈ CMetSp )