Description: Hilbert space vector addition is commutative. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hladdf.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
hladdf.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
Assertion | hlcom | ⊢ ( ( 𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) = ( 𝐵 𝐺 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hladdf.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
2 | hladdf.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
3 | hlnv | ⊢ ( 𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec ) | |
4 | 1 2 | nvcom | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) = ( 𝐵 𝐺 𝐴 ) ) |
5 | 3 4 | syl3an1 | ⊢ ( ( 𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) = ( 𝐵 𝐺 𝐴 ) ) |