Metamath Proof Explorer


Theorem hlcom

Description: Hilbert space vector addition is commutative. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hladdf.1 𝑋 = ( BaseSet ‘ 𝑈 )
hladdf.2 𝐺 = ( +𝑣𝑈 )
Assertion hlcom ( ( 𝑈 ∈ CHilOLD𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐺 𝐵 ) = ( 𝐵 𝐺 𝐴 ) )

Proof

Step Hyp Ref Expression
1 hladdf.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 hladdf.2 𝐺 = ( +𝑣𝑈 )
3 hlnv ( 𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec )
4 1 2 nvcom ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐺 𝐵 ) = ( 𝐵 𝐺 𝐴 ) )
5 3 4 syl3an1 ( ( 𝑈 ∈ CHilOLD𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐺 𝐵 ) = ( 𝐵 𝐺 𝐴 ) )