| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ishlg.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							ishlg.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							ishlg.k | 
							⊢ 𝐾  =  ( hlG ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							ishlg.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑃 )  | 
						
						
							| 5 | 
							
								
							 | 
							ishlg.b | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑃 )  | 
						
						
							| 6 | 
							
								
							 | 
							ishlg.c | 
							⊢ ( 𝜑  →  𝐶  ∈  𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							ishlg.g | 
							⊢ ( 𝜑  →  𝐺  ∈  𝑉 )  | 
						
						
							| 8 | 
							
								
							 | 
							3ancoma | 
							⊢ ( ( 𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) )  ↔  ( 𝐵  ≠  𝐶  ∧  𝐴  ≠  𝐶  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							orcom | 
							⊢ ( ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) )  ↔  ( 𝐵  ∈  ( 𝐶 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) )  ↔  ( 𝐵  ∈  ( 𝐶 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							3anbi3d | 
							⊢ ( 𝜑  →  ( ( 𝐵  ≠  𝐶  ∧  𝐴  ≠  𝐶  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) )  ↔  ( 𝐵  ≠  𝐶  ∧  𝐴  ≠  𝐶  ∧  ( 𝐵  ∈  ( 𝐶 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) ) ) )  | 
						
						
							| 12 | 
							
								8 11
							 | 
							bitrid | 
							⊢ ( 𝜑  →  ( ( 𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) )  ↔  ( 𝐵  ≠  𝐶  ∧  𝐴  ≠  𝐶  ∧  ( 𝐵  ∈  ( 𝐶 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) ) ) )  | 
						
						
							| 13 | 
							
								1 2 3 4 5 6 7
							 | 
							ishlg | 
							⊢ ( 𝜑  →  ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵  ↔  ( 𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) ) ) )  | 
						
						
							| 14 | 
							
								1 2 3 5 4 6 7
							 | 
							ishlg | 
							⊢ ( 𝜑  →  ( 𝐵 ( 𝐾 ‘ 𝐶 ) 𝐴  ↔  ( 𝐵  ≠  𝐶  ∧  𝐴  ≠  𝐶  ∧  ( 𝐵  ∈  ( 𝐶 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) ) ) )  | 
						
						
							| 15 | 
							
								12 13 14
							 | 
							3bitr4d | 
							⊢ ( 𝜑  →  ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵  ↔  𝐵 ( 𝐾 ‘ 𝐶 ) 𝐴 ) )  |