Metamath Proof Explorer


Theorem hlcomd

Description: The half-line relation commutes. Theorem 6.6 of Schwabhauser p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020)

Ref Expression
Hypotheses ishlg.p 𝑃 = ( Base ‘ 𝐺 )
ishlg.i 𝐼 = ( Itv ‘ 𝐺 )
ishlg.k 𝐾 = ( hlG ‘ 𝐺 )
ishlg.a ( 𝜑𝐴𝑃 )
ishlg.b ( 𝜑𝐵𝑃 )
ishlg.c ( 𝜑𝐶𝑃 )
ishlg.g ( 𝜑𝐺𝑉 )
hlcomd.1 ( 𝜑𝐴 ( 𝐾𝐶 ) 𝐵 )
Assertion hlcomd ( 𝜑𝐵 ( 𝐾𝐶 ) 𝐴 )

Proof

Step Hyp Ref Expression
1 ishlg.p 𝑃 = ( Base ‘ 𝐺 )
2 ishlg.i 𝐼 = ( Itv ‘ 𝐺 )
3 ishlg.k 𝐾 = ( hlG ‘ 𝐺 )
4 ishlg.a ( 𝜑𝐴𝑃 )
5 ishlg.b ( 𝜑𝐵𝑃 )
6 ishlg.c ( 𝜑𝐶𝑃 )
7 ishlg.g ( 𝜑𝐺𝑉 )
8 hlcomd.1 ( 𝜑𝐴 ( 𝐾𝐶 ) 𝐵 )
9 1 2 3 4 5 6 7 hlcomb ( 𝜑 → ( 𝐴 ( 𝐾𝐶 ) 𝐵𝐵 ( 𝐾𝐶 ) 𝐴 ) )
10 8 9 mpbid ( 𝜑𝐵 ( 𝐾𝐶 ) 𝐴 )