Description: Every subcomplex Hilbert space is a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hlcph | ⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ishl | ⊢ ( 𝑊 ∈ ℂHil ↔ ( 𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil ) ) | |
| 2 | 1 | simprbi | ⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil ) |