Description: Every subcomplex Hilbert space is a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | hlcph | ⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishl | ⊢ ( 𝑊 ∈ ℂHil ↔ ( 𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil ) ) | |
2 | 1 | simprbi | ⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil ) |