Metamath Proof Explorer


Theorem hleqnid

Description: The endpoint does not belong to the half-line. (Contributed by Thierry Arnoux, 3-Mar-2020)

Ref Expression
Hypotheses ishlg.p 𝑃 = ( Base ‘ 𝐺 )
ishlg.i 𝐼 = ( Itv ‘ 𝐺 )
ishlg.k 𝐾 = ( hlG ‘ 𝐺 )
ishlg.a ( 𝜑𝐴𝑃 )
ishlg.b ( 𝜑𝐵𝑃 )
ishlg.c ( 𝜑𝐶𝑃 )
hlln.1 ( 𝜑𝐺 ∈ TarskiG )
Assertion hleqnid ( 𝜑 → ¬ 𝐴 ( 𝐾𝐴 ) 𝐵 )

Proof

Step Hyp Ref Expression
1 ishlg.p 𝑃 = ( Base ‘ 𝐺 )
2 ishlg.i 𝐼 = ( Itv ‘ 𝐺 )
3 ishlg.k 𝐾 = ( hlG ‘ 𝐺 )
4 ishlg.a ( 𝜑𝐴𝑃 )
5 ishlg.b ( 𝜑𝐵𝑃 )
6 ishlg.c ( 𝜑𝐶𝑃 )
7 hlln.1 ( 𝜑𝐺 ∈ TarskiG )
8 neirr ¬ 𝐴𝐴
9 8 a1i ( 𝜑 → ¬ 𝐴𝐴 )
10 4 adantr ( ( 𝜑𝐴 ( 𝐾𝐴 ) 𝐵 ) → 𝐴𝑃 )
11 5 adantr ( ( 𝜑𝐴 ( 𝐾𝐴 ) 𝐵 ) → 𝐵𝑃 )
12 7 adantr ( ( 𝜑𝐴 ( 𝐾𝐴 ) 𝐵 ) → 𝐺 ∈ TarskiG )
13 simpr ( ( 𝜑𝐴 ( 𝐾𝐴 ) 𝐵 ) → 𝐴 ( 𝐾𝐴 ) 𝐵 )
14 1 2 3 10 11 10 12 13 hlne1 ( ( 𝜑𝐴 ( 𝐾𝐴 ) 𝐵 ) → 𝐴𝐴 )
15 9 14 mtand ( 𝜑 → ¬ 𝐴 ( 𝐾𝐴 ) 𝐵 )