| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							hlhgt4.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							hlhgt4.s | 
							⊢  <   =  ( lt ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							hlhgt4.z | 
							⊢  0   =  ( 0. ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							hlhgt4.u | 
							⊢  1   =  ( 1. ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								1 2 3 4
							 | 
							hlhgt4 | 
							⊢ ( 𝐾  ∈  HL  →  ∃ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ( (  0   <  𝑦  ∧  𝑦  <  𝑥 )  ∧  ( 𝑥  <  𝑧  ∧  𝑧  <   1  ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							hlpos | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Poset )  | 
						
						
							| 7 | 
							
								6
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑦  ∈  𝐵 )  ∧  𝑥  ∈  𝐵 )  ∧  𝑧  ∈  𝐵 )  →  𝐾  ∈  Poset )  | 
						
						
							| 8 | 
							
								
							 | 
							hlop | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP )  | 
						
						
							| 9 | 
							
								8
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑦  ∈  𝐵 )  ∧  𝑥  ∈  𝐵 )  ∧  𝑧  ∈  𝐵 )  →  𝐾  ∈  OP )  | 
						
						
							| 10 | 
							
								1 3
							 | 
							op0cl | 
							⊢ ( 𝐾  ∈  OP  →   0   ∈  𝐵 )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑦  ∈  𝐵 )  ∧  𝑥  ∈  𝐵 )  ∧  𝑧  ∈  𝐵 )  →   0   ∈  𝐵 )  | 
						
						
							| 12 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑦  ∈  𝐵 )  ∧  𝑥  ∈  𝐵 )  ∧  𝑧  ∈  𝐵 )  →  𝑦  ∈  𝐵 )  | 
						
						
							| 13 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑦  ∈  𝐵 )  ∧  𝑥  ∈  𝐵 )  ∧  𝑧  ∈  𝐵 )  →  𝑥  ∈  𝐵 )  | 
						
						
							| 14 | 
							
								1 2
							 | 
							plttr | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  (  0   ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑥  ∈  𝐵 ) )  →  ( (  0   <  𝑦  ∧  𝑦  <  𝑥 )  →   0   <  𝑥 ) )  | 
						
						
							| 15 | 
							
								7 11 12 13 14
							 | 
							syl13anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑦  ∈  𝐵 )  ∧  𝑥  ∈  𝐵 )  ∧  𝑧  ∈  𝐵 )  →  ( (  0   <  𝑦  ∧  𝑦  <  𝑥 )  →   0   <  𝑥 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑦  ∈  𝐵 )  ∧  𝑥  ∈  𝐵 )  ∧  𝑧  ∈  𝐵 )  →  𝑧  ∈  𝐵 )  | 
						
						
							| 17 | 
							
								1 4
							 | 
							op1cl | 
							⊢ ( 𝐾  ∈  OP  →   1   ∈  𝐵 )  | 
						
						
							| 18 | 
							
								9 17
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑦  ∈  𝐵 )  ∧  𝑥  ∈  𝐵 )  ∧  𝑧  ∈  𝐵 )  →   1   ∈  𝐵 )  | 
						
						
							| 19 | 
							
								1 2
							 | 
							plttr | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑥  ∈  𝐵  ∧  𝑧  ∈  𝐵  ∧   1   ∈  𝐵 ) )  →  ( ( 𝑥  <  𝑧  ∧  𝑧  <   1  )  →  𝑥  <   1  ) )  | 
						
						
							| 20 | 
							
								7 13 16 18 19
							 | 
							syl13anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑦  ∈  𝐵 )  ∧  𝑥  ∈  𝐵 )  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑥  <  𝑧  ∧  𝑧  <   1  )  →  𝑥  <   1  ) )  | 
						
						
							| 21 | 
							
								15 20
							 | 
							anim12d | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑦  ∈  𝐵 )  ∧  𝑥  ∈  𝐵 )  ∧  𝑧  ∈  𝐵 )  →  ( ( (  0   <  𝑦  ∧  𝑦  <  𝑥 )  ∧  ( 𝑥  <  𝑧  ∧  𝑧  <   1  ) )  →  (  0   <  𝑥  ∧  𝑥  <   1  ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							rexlimdva | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑦  ∈  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( ∃ 𝑧  ∈  𝐵 ( (  0   <  𝑦  ∧  𝑦  <  𝑥 )  ∧  ( 𝑥  <  𝑧  ∧  𝑧  <   1  ) )  →  (  0   <  𝑥  ∧  𝑥  <   1  ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							reximdva | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑦  ∈  𝐵 )  →  ( ∃ 𝑥  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ( (  0   <  𝑦  ∧  𝑦  <  𝑥 )  ∧  ( 𝑥  <  𝑧  ∧  𝑧  <   1  ) )  →  ∃ 𝑥  ∈  𝐵 (  0   <  𝑥  ∧  𝑥  <   1  ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							rexlimdva | 
							⊢ ( 𝐾  ∈  HL  →  ( ∃ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ( (  0   <  𝑦  ∧  𝑦  <  𝑥 )  ∧  ( 𝑥  <  𝑧  ∧  𝑧  <   1  ) )  →  ∃ 𝑥  ∈  𝐵 (  0   <  𝑥  ∧  𝑥  <   1  ) ) )  | 
						
						
							| 25 | 
							
								5 24
							 | 
							mpd | 
							⊢ ( 𝐾  ∈  HL  →  ∃ 𝑥  ∈  𝐵 (  0   <  𝑥  ∧  𝑥  <   1  ) )  |