Metamath Proof Explorer


Theorem hlhgt4

Description: A Hilbert lattice has a height of at least 4. (Contributed by NM, 4-Dec-2011)

Ref Expression
Hypotheses hlhgt4.b 𝐵 = ( Base ‘ 𝐾 )
hlhgt4.s < = ( lt ‘ 𝐾 )
hlhgt4.z 0 = ( 0. ‘ 𝐾 )
hlhgt4.u 1 = ( 1. ‘ 𝐾 )
Assertion hlhgt4 ( 𝐾 ∈ HL → ∃ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 0 < 𝑥𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧𝑧 < 1 ) ) )

Proof

Step Hyp Ref Expression
1 hlhgt4.b 𝐵 = ( Base ‘ 𝐾 )
2 hlhgt4.s < = ( lt ‘ 𝐾 )
3 hlhgt4.z 0 = ( 0. ‘ 𝐾 )
4 hlhgt4.u 1 = ( 1. ‘ 𝐾 )
5 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
6 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
7 eqid ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 )
8 1 5 2 6 3 4 7 ishlat2 ( 𝐾 ∈ HL ↔ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ ( ∀ 𝑥 ∈ ( Atoms ‘ 𝐾 ) ∀ 𝑦 ∈ ( Atoms ‘ 𝐾 ) ( ( 𝑥𝑦 → ∃ 𝑧 ∈ ( Atoms ‘ 𝐾 ) ( 𝑧𝑥𝑧𝑦𝑧 ( le ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) 𝑦 ) ) ) ∧ ∀ 𝑧𝐵 ( ( ¬ 𝑥 ( le ‘ 𝐾 ) 𝑧𝑥 ( le ‘ 𝐾 ) ( 𝑧 ( join ‘ 𝐾 ) 𝑦 ) ) → 𝑦 ( le ‘ 𝐾 ) ( 𝑧 ( join ‘ 𝐾 ) 𝑥 ) ) ) ∧ ∃ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 0 < 𝑥𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧𝑧 < 1 ) ) ) ) )
9 simprr ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ ( ∀ 𝑥 ∈ ( Atoms ‘ 𝐾 ) ∀ 𝑦 ∈ ( Atoms ‘ 𝐾 ) ( ( 𝑥𝑦 → ∃ 𝑧 ∈ ( Atoms ‘ 𝐾 ) ( 𝑧𝑥𝑧𝑦𝑧 ( le ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) 𝑦 ) ) ) ∧ ∀ 𝑧𝐵 ( ( ¬ 𝑥 ( le ‘ 𝐾 ) 𝑧𝑥 ( le ‘ 𝐾 ) ( 𝑧 ( join ‘ 𝐾 ) 𝑦 ) ) → 𝑦 ( le ‘ 𝐾 ) ( 𝑧 ( join ‘ 𝐾 ) 𝑥 ) ) ) ∧ ∃ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 0 < 𝑥𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧𝑧 < 1 ) ) ) ) → ∃ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 0 < 𝑥𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧𝑧 < 1 ) ) )
10 8 9 sylbi ( 𝐾 ∈ HL → ∃ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 0 < 𝑥𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧𝑧 < 1 ) ) )