Step |
Hyp |
Ref |
Expression |
1 |
|
hlhgt4.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
hlhgt4.s |
⊢ < = ( lt ‘ 𝐾 ) |
3 |
|
hlhgt4.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
4 |
|
hlhgt4.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
5 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
6 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
7 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
8 |
1 5 2 6 3 4 7
|
ishlat2 |
⊢ ( 𝐾 ∈ HL ↔ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ ( ∀ 𝑥 ∈ ( Atoms ‘ 𝐾 ) ∀ 𝑦 ∈ ( Atoms ‘ 𝐾 ) ( ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( Atoms ‘ 𝐾 ) ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ( le ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) 𝑦 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑥 ( le ‘ 𝐾 ) 𝑧 ∧ 𝑥 ( le ‘ 𝐾 ) ( 𝑧 ( join ‘ 𝐾 ) 𝑦 ) ) → 𝑦 ( le ‘ 𝐾 ) ( 𝑧 ( join ‘ 𝐾 ) 𝑥 ) ) ) ∧ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) ) ) |
9 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ ( ∀ 𝑥 ∈ ( Atoms ‘ 𝐾 ) ∀ 𝑦 ∈ ( Atoms ‘ 𝐾 ) ( ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( Atoms ‘ 𝐾 ) ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ( le ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) 𝑦 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑥 ( le ‘ 𝐾 ) 𝑧 ∧ 𝑥 ( le ‘ 𝐾 ) ( 𝑧 ( join ‘ 𝐾 ) 𝑦 ) ) → 𝑦 ( le ‘ 𝐾 ) ( 𝑧 ( join ‘ 𝐾 ) 𝑥 ) ) ) ∧ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) ) → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) |
10 |
8 9
|
sylbi |
⊢ ( 𝐾 ∈ HL → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) |