Metamath Proof Explorer
Description: The half-line relation is reflexive. Theorem 6.5 of Schwabhauser
p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020)
|
|
Ref |
Expression |
|
Hypotheses |
ishlg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
|
|
ishlg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
|
|
ishlg.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
|
|
ishlg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
|
|
ishlg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
|
|
ishlg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
|
|
hlln.1 |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
|
|
hlid.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐶 ) |
|
Assertion |
hlid |
⊢ ( 𝜑 → 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ishlg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ishlg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
ishlg.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
4 |
|
ishlg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
5 |
|
ishlg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
6 |
|
ishlg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
7 |
|
hlln.1 |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
8 |
|
hlid.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐶 ) |
9 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
10 |
1 9 2 7 6 4
|
tgbtwntriv2 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐶 𝐼 𝐴 ) ) |
11 |
10
|
olcd |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐶 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐴 ) ) ) |
12 |
1 2 3 4 4 6 7
|
ishlg |
⊢ ( 𝜑 → ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐴 ↔ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ) ) |
13 |
8 8 11 12
|
mpbir3and |
⊢ ( 𝜑 → 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐴 ) |