Metamath Proof Explorer


Theorem hlim0

Description: The zero sequence in Hilbert space converges to the zero vector. (Contributed by NM, 17-Aug-1999) (Proof shortened by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Assertion hlim0 ( ℕ × { 0 } ) ⇝𝑣 0

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0 ∈ ℋ
2 1 fconst6 ( ℕ × { 0 } ) : ℕ ⟶ ℋ
3 ax-hilex ℋ ∈ V
4 nnex ℕ ∈ V
5 3 4 elmap ( ( ℕ × { 0 } ) ∈ ( ℋ ↑m ℕ ) ↔ ( ℕ × { 0 } ) : ℕ ⟶ ℋ )
6 2 5 mpbir ( ℕ × { 0 } ) ∈ ( ℋ ↑m ℕ )
7 eqid ⟨ ⟨ + , · ⟩ , norm ⟩ = ⟨ ⟨ + , · ⟩ , norm
8 eqid ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) = ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
9 7 8 hhxmet ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ∈ ( ∞Met ‘ ℋ )
10 eqid ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) = ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) )
11 10 mopntopon ( ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ∈ ( ∞Met ‘ ℋ ) → ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ∈ ( TopOn ‘ ℋ ) )
12 9 11 ax-mp ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ∈ ( TopOn ‘ ℋ )
13 1z 1 ∈ ℤ
14 nnuz ℕ = ( ℤ ‘ 1 )
15 14 lmconst ( ( ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ∈ ( TopOn ‘ ℋ ) ∧ 0 ∈ ℋ ∧ 1 ∈ ℤ ) → ( ℕ × { 0 } ) ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ) 0 )
16 12 1 13 15 mp3an ( ℕ × { 0 } ) ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ) 0
17 7 8 10 hhlm 𝑣 = ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ) ↾ ( ℋ ↑m ℕ ) )
18 17 breqi ( ( ℕ × { 0 } ) ⇝𝑣 0 ↔ ( ℕ × { 0 } ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ) ↾ ( ℋ ↑m ℕ ) ) 0 )
19 1 elexi 0 ∈ V
20 19 brresi ( ( ℕ × { 0 } ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ) ↾ ( ℋ ↑m ℕ ) ) 0 ↔ ( ( ℕ × { 0 } ) ∈ ( ℋ ↑m ℕ ) ∧ ( ℕ × { 0 } ) ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ) 0 ) )
21 18 20 bitri ( ( ℕ × { 0 } ) ⇝𝑣 0 ↔ ( ( ℕ × { 0 } ) ∈ ( ℋ ↑m ℕ ) ∧ ( ℕ × { 0 } ) ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ) 0 ) )
22 6 16 21 mpbir2an ( ℕ × { 0 } ) ⇝𝑣 0