Metamath Proof Explorer


Theorem hlimconvi

Description: Convergence of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Hypothesis hlim.1 𝐴 ∈ V
Assertion hlimconvi ( ( 𝐹𝑣 𝐴𝐵 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ𝑦 ) ( norm ‘ ( ( 𝐹𝑧 ) − 𝐴 ) ) < 𝐵 )

Proof

Step Hyp Ref Expression
1 hlim.1 𝐴 ∈ V
2 1 hlimi ( 𝐹𝑣 𝐴 ↔ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ𝑦 ) ( norm ‘ ( ( 𝐹𝑧 ) − 𝐴 ) ) < 𝑥 ) )
3 2 simprbi ( 𝐹𝑣 𝐴 → ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ𝑦 ) ( norm ‘ ( ( 𝐹𝑧 ) − 𝐴 ) ) < 𝑥 )
4 breq2 ( 𝑥 = 𝐵 → ( ( norm ‘ ( ( 𝐹𝑧 ) − 𝐴 ) ) < 𝑥 ↔ ( norm ‘ ( ( 𝐹𝑧 ) − 𝐴 ) ) < 𝐵 ) )
5 4 rexralbidv ( 𝑥 = 𝐵 → ( ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ𝑦 ) ( norm ‘ ( ( 𝐹𝑧 ) − 𝐴 ) ) < 𝑥 ↔ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ𝑦 ) ( norm ‘ ( ( 𝐹𝑧 ) − 𝐴 ) ) < 𝐵 ) )
6 5 rspccva ( ( ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ𝑦 ) ( norm ‘ ( ( 𝐹𝑧 ) − 𝐴 ) ) < 𝑥𝐵 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ𝑦 ) ( norm ‘ ( ( 𝐹𝑧 ) − 𝐴 ) ) < 𝐵 )
7 3 6 sylan ( ( 𝐹𝑣 𝐴𝐵 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ𝑦 ) ( norm ‘ ( ( 𝐹𝑧 ) − 𝐴 ) ) < 𝐵 )