Description: A Hilbert space sequence converges to at most one limit. (Contributed by NM, 19-Aug-1999) (Revised by Mario Carneiro, 2-May-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hlimuni | ⊢ ( ( 𝐹 ⇝𝑣 𝐴 ∧ 𝐹 ⇝𝑣 𝐵 ) → 𝐴 = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlimf | ⊢ ⇝𝑣 : dom ⇝𝑣 ⟶ ℋ | |
2 | ffun | ⊢ ( ⇝𝑣 : dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 ) | |
3 | funbrfv | ⊢ ( Fun ⇝𝑣 → ( 𝐹 ⇝𝑣 𝐴 → ( ⇝𝑣 ‘ 𝐹 ) = 𝐴 ) ) | |
4 | 1 2 3 | mp2b | ⊢ ( 𝐹 ⇝𝑣 𝐴 → ( ⇝𝑣 ‘ 𝐹 ) = 𝐴 ) |
5 | funbrfv | ⊢ ( Fun ⇝𝑣 → ( 𝐹 ⇝𝑣 𝐵 → ( ⇝𝑣 ‘ 𝐹 ) = 𝐵 ) ) | |
6 | 1 2 5 | mp2b | ⊢ ( 𝐹 ⇝𝑣 𝐵 → ( ⇝𝑣 ‘ 𝐹 ) = 𝐵 ) |
7 | 4 6 | sylan9req | ⊢ ( ( 𝐹 ⇝𝑣 𝐴 ∧ 𝐹 ⇝𝑣 𝐵 ) → 𝐴 = 𝐵 ) |