Metamath Proof Explorer


Theorem hlimuni

Description: A Hilbert space sequence converges to at most one limit. (Contributed by NM, 19-Aug-1999) (Revised by Mario Carneiro, 2-May-2015) (New usage is discouraged.)

Ref Expression
Assertion hlimuni ( ( 𝐹𝑣 𝐴𝐹𝑣 𝐵 ) → 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 hlimf 𝑣 : dom ⇝𝑣 ⟶ ℋ
2 ffun ( ⇝𝑣 : dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 )
3 funbrfv ( Fun ⇝𝑣 → ( 𝐹𝑣 𝐴 → ( ⇝𝑣𝐹 ) = 𝐴 ) )
4 1 2 3 mp2b ( 𝐹𝑣 𝐴 → ( ⇝𝑣𝐹 ) = 𝐴 )
5 funbrfv ( Fun ⇝𝑣 → ( 𝐹𝑣 𝐵 → ( ⇝𝑣𝐹 ) = 𝐵 ) )
6 1 2 5 mp2b ( 𝐹𝑣 𝐵 → ( ⇝𝑣𝐹 ) = 𝐵 )
7 4 6 sylan9req ( ( 𝐹𝑣 𝐴𝐹𝑣 𝐵 ) → 𝐴 = 𝐵 )