Metamath Proof Explorer


Theorem hlipcj

Description: Conjugate law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlipf.1 𝑋 = ( BaseSet ‘ 𝑈 )
hlipf.7 𝑃 = ( ·𝑖OLD𝑈 )
Assertion hlipcj ( ( 𝑈 ∈ CHilOLD𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝑃 𝐵 ) = ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 hlipf.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 hlipf.7 𝑃 = ( ·𝑖OLD𝑈 )
3 hlnv ( 𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec )
4 1 2 dipcj ( ( 𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋 ) → ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐵 ) )
5 3 4 syl3an1 ( ( 𝑈 ∈ CHilOLD𝐵𝑋𝐴𝑋 ) → ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐵 ) )
6 5 3com23 ( ( 𝑈 ∈ CHilOLD𝐴𝑋𝐵𝑋 ) → ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐵 ) )
7 6 eqcomd ( ( 𝑈 ∈ CHilOLD𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝑃 𝐵 ) = ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) )