Description: Conjugate law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hlipf.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
hlipf.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
Assertion | hlipcj | ⊢ ( ( 𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐵 ) = ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlipf.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
2 | hlipf.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
3 | hlnv | ⊢ ( 𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec ) | |
4 | 1 2 | dipcj | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐵 ) ) |
5 | 3 4 | syl3an1 | ⊢ ( ( 𝑈 ∈ CHilOLD ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐵 ) ) |
6 | 5 | 3com23 | ⊢ ( ( 𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐵 ) ) |
7 | 6 | eqcomd | ⊢ ( ( 𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐵 ) = ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) ) |