Metamath Proof Explorer


Theorem hlipf

Description: Mapping for Hilbert space inner product. (Contributed by NM, 19-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlipf.1 𝑋 = ( BaseSet ‘ 𝑈 )
hlipf.7 𝑃 = ( ·𝑖OLD𝑈 )
Assertion hlipf ( 𝑈 ∈ CHilOLD𝑃 : ( 𝑋 × 𝑋 ) ⟶ ℂ )

Proof

Step Hyp Ref Expression
1 hlipf.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 hlipf.7 𝑃 = ( ·𝑖OLD𝑈 )
3 hlnv ( 𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec )
4 1 2 ipf ( 𝑈 ∈ NrmCVec → 𝑃 : ( 𝑋 × 𝑋 ) ⟶ ℂ )
5 3 4 syl ( 𝑈 ∈ CHilOLD𝑃 : ( 𝑋 × 𝑋 ) ⟶ ℂ )