Description: Mapping for Hilbert space inner product. (Contributed by NM, 19-Nov-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hlipf.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
hlipf.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
Assertion | hlipf | ⊢ ( 𝑈 ∈ CHilOLD → 𝑃 : ( 𝑋 × 𝑋 ) ⟶ ℂ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlipf.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
2 | hlipf.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
3 | hlnv | ⊢ ( 𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec ) | |
4 | 1 2 | ipf | ⊢ ( 𝑈 ∈ NrmCVec → 𝑃 : ( 𝑋 × 𝑋 ) ⟶ ℂ ) |
5 | 3 4 | syl | ⊢ ( 𝑈 ∈ CHilOLD → 𝑃 : ( 𝑋 × 𝑋 ) ⟶ ℂ ) |