Metamath Proof Explorer


Theorem hlln

Description: The half-line relation implies colinearity, part of Theorem 6.4 of Schwabhauser p. 44. (Contributed by Thierry Arnoux, 22-Feb-2020)

Ref Expression
Hypotheses ishlg.p 𝑃 = ( Base ‘ 𝐺 )
ishlg.i 𝐼 = ( Itv ‘ 𝐺 )
ishlg.k 𝐾 = ( hlG ‘ 𝐺 )
ishlg.a ( 𝜑𝐴𝑃 )
ishlg.b ( 𝜑𝐵𝑃 )
ishlg.c ( 𝜑𝐶𝑃 )
hlln.1 ( 𝜑𝐺 ∈ TarskiG )
hlln.l 𝐿 = ( LineG ‘ 𝐺 )
hlln.2 ( 𝜑𝐴 ( 𝐾𝐶 ) 𝐵 )
Assertion hlln ( 𝜑𝐴 ∈ ( 𝐵 𝐿 𝐶 ) )

Proof

Step Hyp Ref Expression
1 ishlg.p 𝑃 = ( Base ‘ 𝐺 )
2 ishlg.i 𝐼 = ( Itv ‘ 𝐺 )
3 ishlg.k 𝐾 = ( hlG ‘ 𝐺 )
4 ishlg.a ( 𝜑𝐴𝑃 )
5 ishlg.b ( 𝜑𝐵𝑃 )
6 ishlg.c ( 𝜑𝐶𝑃 )
7 hlln.1 ( 𝜑𝐺 ∈ TarskiG )
8 hlln.l 𝐿 = ( LineG ‘ 𝐺 )
9 hlln.2 ( 𝜑𝐴 ( 𝐾𝐶 ) 𝐵 )
10 eqid ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 )
11 7 adantr ( ( 𝜑𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG )
12 6 adantr ( ( 𝜑𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐶𝑃 )
13 4 adantr ( ( 𝜑𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐴𝑃 )
14 5 adantr ( ( 𝜑𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐵𝑃 )
15 simpr ( ( 𝜑𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) )
16 1 10 2 11 12 13 14 15 tgbtwncom ( ( 𝜑𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) )
17 16 3mix1d ( ( 𝜑𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → ( 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ) )
18 7 adantr ( ( 𝜑𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐺 ∈ TarskiG )
19 6 adantr ( ( 𝜑𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐶𝑃 )
20 5 adantr ( ( 𝜑𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐵𝑃 )
21 4 adantr ( ( 𝜑𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐴𝑃 )
22 simpr ( ( 𝜑𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) )
23 1 10 2 18 19 20 21 22 tgbtwncom ( ( 𝜑𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
24 23 3mix2d ( ( 𝜑𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → ( 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ) )
25 1 2 3 4 5 6 7 ishlg ( 𝜑 → ( 𝐴 ( 𝐾𝐶 ) 𝐵 ↔ ( 𝐴𝐶𝐵𝐶 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ) )
26 9 25 mpbid ( 𝜑 → ( 𝐴𝐶𝐵𝐶 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) )
27 26 simp3d ( 𝜑 → ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) )
28 17 24 27 mpjaodan ( 𝜑 → ( 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ) )
29 26 simp2d ( 𝜑𝐵𝐶 )
30 1 8 2 7 5 6 29 4 tgellng ( 𝜑 → ( 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ↔ ( 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ) ) )
31 28 30 mpbird ( 𝜑𝐴 ∈ ( 𝐵 𝐿 𝐶 ) )