Step |
Hyp |
Ref |
Expression |
1 |
|
ishlg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ishlg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
ishlg.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
4 |
|
ishlg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
5 |
|
ishlg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
6 |
|
ishlg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
7 |
|
hlln.1 |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
8 |
|
hlln.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
9 |
|
hlln.2 |
⊢ ( 𝜑 → 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ) |
10 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
11 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
12 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐶 ∈ 𝑃 ) |
13 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
14 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) |
16 |
1 10 2 11 12 13 14 15
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) |
17 |
16
|
3mix1d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → ( 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ) ) |
18 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐺 ∈ TarskiG ) |
19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐶 ∈ 𝑃 ) |
20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐵 ∈ 𝑃 ) |
21 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐴 ∈ 𝑃 ) |
22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) |
23 |
1 10 2 18 19 20 21 22
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
24 |
23
|
3mix2d |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → ( 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ) ) |
25 |
1 2 3 4 5 6 7
|
ishlg |
⊢ ( 𝜑 → ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ↔ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ) ) |
26 |
9 25
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ) |
27 |
26
|
simp3d |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) |
28 |
17 24 27
|
mpjaodan |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ) ) |
29 |
26
|
simp2d |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
30 |
1 8 2 7 5 6 29 4
|
tgellng |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ↔ ( 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ) ) ) |
31 |
28 30
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ) |