| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ishlg.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							ishlg.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							ishlg.k | 
							⊢ 𝐾  =  ( hlG ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							ishlg.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑃 )  | 
						
						
							| 5 | 
							
								
							 | 
							ishlg.b | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑃 )  | 
						
						
							| 6 | 
							
								
							 | 
							ishlg.c | 
							⊢ ( 𝜑  →  𝐶  ∈  𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							hlln.1 | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 8 | 
							
								
							 | 
							hlln.l | 
							⊢ 𝐿  =  ( LineG ‘ 𝐺 )  | 
						
						
							| 9 | 
							
								
							 | 
							hlln.2 | 
							⊢ ( 𝜑  →  𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 )  | 
						
						
							| 11 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  𝐺  ∈  TarskiG )  | 
						
						
							| 12 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  𝐶  ∈  𝑃 )  | 
						
						
							| 13 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  𝐴  ∈  𝑃 )  | 
						
						
							| 14 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  𝐵  ∈  𝑃 )  | 
						
						
							| 15 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  | 
						
						
							| 16 | 
							
								1 10 2 11 12 13 14 15
							 | 
							tgbtwncom | 
							⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							3mix1d | 
							⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  ( 𝐴  ∈  ( 𝐵 𝐼 𝐶 )  ∨  𝐵  ∈  ( 𝐴 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐵 𝐼 𝐴 ) ) )  | 
						
						
							| 18 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) )  →  𝐺  ∈  TarskiG )  | 
						
						
							| 19 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) )  →  𝐶  ∈  𝑃 )  | 
						
						
							| 20 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) )  →  𝐵  ∈  𝑃 )  | 
						
						
							| 21 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) )  →  𝐴  ∈  𝑃 )  | 
						
						
							| 22 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) )  →  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) )  | 
						
						
							| 23 | 
							
								1 10 2 18 19 20 21 22
							 | 
							tgbtwncom | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) )  →  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							3mix2d | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) )  →  ( 𝐴  ∈  ( 𝐵 𝐼 𝐶 )  ∨  𝐵  ∈  ( 𝐴 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐵 𝐼 𝐴 ) ) )  | 
						
						
							| 25 | 
							
								1 2 3 4 5 6 7
							 | 
							ishlg | 
							⊢ ( 𝜑  →  ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵  ↔  ( 𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) ) ) )  | 
						
						
							| 26 | 
							
								9 25
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							simp3d | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) )  | 
						
						
							| 28 | 
							
								17 24 27
							 | 
							mpjaodan | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  ( 𝐵 𝐼 𝐶 )  ∨  𝐵  ∈  ( 𝐴 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐵 𝐼 𝐴 ) ) )  | 
						
						
							| 29 | 
							
								26
							 | 
							simp2d | 
							⊢ ( 𝜑  →  𝐵  ≠  𝐶 )  | 
						
						
							| 30 | 
							
								1 8 2 7 5 6 29 4
							 | 
							tgellng | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  ( 𝐵 𝐿 𝐶 )  ↔  ( 𝐴  ∈  ( 𝐵 𝐼 𝐶 )  ∨  𝐵  ∈  ( 𝐴 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐵 𝐼 𝐴 ) ) ) )  | 
						
						
							| 31 | 
							
								28 30
							 | 
							mpbird | 
							⊢ ( 𝜑  →  𝐴  ∈  ( 𝐵 𝐿 𝐶 ) )  |