Description: The induced metric on a complex Hilbert space. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hlcmet.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
hlcmet.8 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
Assertion | hlmet | ⊢ ( 𝑈 ∈ CHilOLD → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcmet.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
2 | hlcmet.8 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
3 | 1 2 | hlcmet | ⊢ ( 𝑈 ∈ CHilOLD → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
4 | cmetmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
5 | 3 4 | syl | ⊢ ( 𝑈 ∈ CHilOLD → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |