Metamath Proof Explorer


Theorem hlmulass

Description: Hilbert space scalar multiplication associative law. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlmulf.1 𝑋 = ( BaseSet ‘ 𝑈 )
hlmulf.4 𝑆 = ( ·𝑠OLD𝑈 )
Assertion hlmulass ( ( 𝑈 ∈ CHilOLD ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋 ) ) → ( ( 𝐴 · 𝐵 ) 𝑆 𝐶 ) = ( 𝐴 𝑆 ( 𝐵 𝑆 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 hlmulf.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 hlmulf.4 𝑆 = ( ·𝑠OLD𝑈 )
3 hlnv ( 𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec )
4 1 2 nvsass ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋 ) ) → ( ( 𝐴 · 𝐵 ) 𝑆 𝐶 ) = ( 𝐴 𝑆 ( 𝐵 𝑆 𝐶 ) ) )
5 3 4 sylan ( ( 𝑈 ∈ CHilOLD ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋 ) ) → ( ( 𝐴 · 𝐵 ) 𝑆 𝐶 ) = ( 𝐴 𝑆 ( 𝐵 𝑆 𝐶 ) ) )