Metamath Proof Explorer


Theorem hlmulf

Description: Mapping for Hilbert space scalar multiplication. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlmulf.1 𝑋 = ( BaseSet ‘ 𝑈 )
hlmulf.4 𝑆 = ( ·𝑠OLD𝑈 )
Assertion hlmulf ( 𝑈 ∈ CHilOLD𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 )

Proof

Step Hyp Ref Expression
1 hlmulf.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 hlmulf.4 𝑆 = ( ·𝑠OLD𝑈 )
3 hlnv ( 𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec )
4 1 2 nvsf ( 𝑈 ∈ NrmCVec → 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 )
5 3 4 syl ( 𝑈 ∈ CHilOLD𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 )