Metamath Proof Explorer


Theorem hlmulid

Description: Hilbert space scalar multiplication by one. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlmulf.1 𝑋 = ( BaseSet ‘ 𝑈 )
hlmulf.4 𝑆 = ( ·𝑠OLD𝑈 )
Assertion hlmulid ( ( 𝑈 ∈ CHilOLD𝐴𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 hlmulf.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 hlmulf.4 𝑆 = ( ·𝑠OLD𝑈 )
3 hlnv ( 𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec )
4 1 2 nvsid ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 )
5 3 4 sylan ( ( 𝑈 ∈ CHilOLD𝐴𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 )