Metamath Proof Explorer


Theorem hlnv

Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 17-Mar-2007) (New usage is discouraged.)

Ref Expression
Assertion hlnv ( 𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec )

Proof

Step Hyp Ref Expression
1 hlobn ( 𝑈 ∈ CHilOLD𝑈 ∈ CBan )
2 bnnv ( 𝑈 ∈ CBan → 𝑈 ∈ NrmCVec )
3 1 2 syl ( 𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec )